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Introduction
This is a book of readings from the Arithmetic Teacher on selected
topics in geometry. The articles reprinted here are samples of material
published in the journal from its beginning in February 1954 through
February 1970.

The selection of readings to represent the contribution of the Arith-
metic Teacher to geometry for grades K-8 was not easy. In some cases
ai article was chosen because it develops a topic or idea that is unique
nd original or because it covers an area for which few articles have

been written. When one article paralleled or overlapped another, a
choice wP , made on the basis of an evaluation by the panel of reviewers.
Since the number of pages was limited in order to provide an inexpen-
sive publication, articles on the topics of research and measurement are
not included in the readings but are represented in the Bibliography.
A rather complete list of these and other pertinent articles is contained
in the Bibliography, in which the latest citation is from the issue of
May 1970. This listing includes the articles reprinted h 3re.

In recent years the Arithmetic Teacher has carried a variety of
articles dealing with geometry in grades K-8. It is interesting to note
the growth of attention given to the topic. t3efore 1959 no articles in
the journal dealt specifically with geometry. Even after that time the
flow of published articles was minuscule until the middle sixties, when
the increase in publication was dramatic. As an indication of the in-
crease, note that the following six issues emphasized the theme of
geometry: October 1966, February 1967, October 1967, December
1968, October 1969, and February 1970.

The increase in publication developed in response to a new concept
of geometry for the elementary school. Geometry has classically been
associated with Euclid and an axiomatic approach to study, and from
this viewpoint geometry was not considered appropriate for the
elementary school program. The new approach is neither axiomatic
nor narrowly defined but rather places emphasis upon such ideas as
the environment, informal approaches, and readiness.

The term "geometry," from its Greek derivation, has the meaning
"earth measurement." Today our concern is with the exploration, study,
and measurement of space; and to coin a word "spaceometry"
would more aptly identify the subject. The broader concept of space

1



2 INTRODUCTION

relationships is a significant part of the program for grades K-8. It is
realized that each learner intuitively and naturally senseL and responds
to his spatial environment. Ideas such as position, direction, distance,
size, and shape are sensed in the child's earliest experiences. It appears
to be true that by the time a child enters school, his knowledge and
understanding of geometry may be greater than his development of
concepts of number.

As published information about the teaching of geometry in grades
K-8 has increased, so has the need to disseminate it. With evidence of
demand and need, this book of readings has been assembled to promote
wider distribution of quality material dealing with this subject.

Fri



Involvement

The articles in this publication have been grouped according to two
major categories involvement and instruction. Those falling under
the second category have again been grouped according to whether
the emphasis is on technique of instruction or its rationale. While no
article is strictly limited to any one of these categories, it is thought that
the selected articles highlight either involvement or the techniques or
rationale of inst action.

Involvement! Personal involvement and learning are inseparable.
One of the basic approaches to the mathematical involvement of chil-
dren is through the study of geometry. When studied intuitively, the
environment of a child opens a wide vista of geometric ideas. This
environmental approach to geometry lays a foundation of readiness for
informal and formal geometry at a later age.

Involvement of the learner! In the beginning article we see Joey, age
six, involved with geometric construction and problem solving that lead
him to significant mathematical ideas. His inventions were guided by
the "teacher" who provided the materials and the freedom to do prob-
lem solving and also by his sister, Maureen, who assisted him.

Involvement of a classroom of learners and their teacher is described
in Black's article. As its title suggests, geometry is alive! The author
presents many ideas that help teachers to identify geometric concepts
and to sense how to organize a laboratory for experimental involve-
ment. MacLean, in the article that follows and complements Black's
article, describes the K-6 Experimental Project of the Ontario Mathe-
matics Commission. The eight activities that are described illustrate
ideas a teacher can adapt for his own classroom.

Involvement of preservice teachers is discussed by Kipps in de-
scribing her experimental course for university students. Using a
laboratory approach, she challenged her students to experience some
of the things they should practice in their classrooms with children.

These four articles illustrate ideas of involvement of children and
teachers. The message is simple and exciting. He who pursues involve-
ment as a basic procedure for learning will not only search for tech-
niques that are productive but will seek effective rationale for the
concepts that he teaches.

3
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With sticks and rubber bands

JOSEPH SCOTT
North Valley Stream, New York
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6 INVOLVEMENT
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With Sticks and Rubber Bands / Scott 7
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Joey, who is six years old, spent about
seven hours with this project, about two
hours at a time.

The sticks are 1/4" dowel rods, three

9



8 INVOLVEMENT

feet long, and available at lumber yards
at about $.08 apiece. About 30 sticks are
sufficient. Regular rubber bands were used.

What learning was involved?

Mathematics: two-dimensional shapes
(triangle, square, pen-
tagon, and others).
three-dimensional shapes
(tetrahedron, octahe-
dron, cube, and others).
symmetry of figures,
counting edges, corners,
faces.

Physics: rigidity of the triangle as

13

used in bridges, build-
ings.

Art: positioning shapes, sym-
metry (one could cover
these shapes with crepe
paper).

Language Arts: Joey wrote about what
he did and read his
story.

Problem Solving: problem solving that in-
volved concentration and
freedom.

-DON COHEN, Madison Project Resident
Coordinator, New York, New York.



Geometry alive in primary
classrooms

JANET M. BLACK Barrie, Ontario, Canada

Janet M. Black is a classroom teacher
She has experimented extensively in
typical lesson that she describes was
of Teachers of Mathematics meeting

Planning an experimental course in
geometry for forty-two Grade 3 students
was quite a challenge. Five phases of
geometry were to be included:

1. A study of solids and their basic prop-
erties to develop in children an aware-
ness of shape in connection with their

environment

2. A study of plane figures through the
examination of the surfaces of solids
and of real objects around school and

home
3. A study of lines as the edges of solids

and of points as fixed locations in space
through construction of models and
experimentation with as many con-
crete objects as possible

4. A review of concepts through the
"building" of solid shapes from flat
surfaces and the construction of models
in the environment

5. Symmetry, tiling, and nesting involving

solids and flats

During geometry periods, work stations
were set up. The children were challenged
orally by assignment cards, by the tape
recorder, or by charts to examine certain
materials to see what could be discovered.
The following description of a typical les-
son involving geometric concepts took
place at about stage two of the five phases
of geometry. Children were in a transitional
stage proceeding from the study of solids

9

in Barrie.
teaching geometry to children. The
reported at The National Council
in Calgary, August 1966.

to the study of plane shapes, and the
activities were designed with three definite
ideas in mind:

1. To make the transition from the study
of solids to the study of plane shapes as
natural for the children as possible

2. To establish through actual experi-
mentation with physical materials an in-
tuitive understanding of both solid and
plane shapes

3. To provide for primary children the
time to discover and the freedom to ex-
periment within the classroom at each
individual's own chosen speed

Seating arrangements within the class-
room were changed frequently, depending
upon the number of work stations required
for each lesson. For this particular session
six stations which could accommodate ap-
proximately eight children each were set
up with the required materials. The sta-
tions are numbered on the following floor
plan but were not numbered during the

actual lesson, since children proceeded
from one station to another in any order
they chose as long as there was a place
free at the chosen site.

Children at centre one are using half-
sheets of foolscap and a large wooden
solid each. Their challenge was given
orally. They were asked to examine the
solid on the desk, and on the paper list
all the things that they could think of

1 A



10 INVOLVEMENT

which have the same shape as the solid.
For instance, the boy in the picture is
examining the cube, and he may list such
things as the following:

1. My sister's jack-in-the-box
2. The blocks I have at home
3. The plastic pencil holder
4. Dice

5. The box on the green shelf

el'

1 Fi

When he is finished he is encouraged to
discuss his list with the person next to
him. He may then move to another desk
in the same section and prepare a similar
list for a different Solid, or he may proceed
to a new work centrewhichever he
chooses.

CENTRE TWO

Children working at this section have
a large chart to guide their examination
of solids. Since the transition from three-
dimensional shape to two-dimensional
shape is a general aim for this lesson, the
chart contains questions such as these:

1. List the shapes which look like boxes.
2. Which solids have flat surfaces shaped

like circles?
3. Find all the solids which have more than

five flat surfaces.
4. Which rolls more easily?

a) a solid with two flat surfaces
b) a solid with five flat surfaces

5. Spin the square pyramid. What other
solid does it look like while it is spinning?

Children are encouraged actually to handle
and experiment with the solids as they
prepare their charts.

The third centre deals with the problem
of rigidity. Children have examined a
large cube and have built its "skeleton"
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At this centre nine individual work cards
have been prepared, all dealing with the
shapes of faces (triangles, rectangles, and
squares). In this particular instance, the
fellow in the picture is working through
an assignment dealing with the positioning
of one face shape over anotheran in-
tuitive experience with intersection of lines,
but directly mentioning only the shape of
a three-sided flat surface. Since each as-
signment card at this station is different,
the boy may choose to continue to work
in this section at a different desk with
a different card or to proceed to any other
station which intaests him upon comple-
tion of his present assignment. In many
cases it is possible to put the answers to
assignment cards on the back of the card,
and the student therefore is capable of
marking his own work.

CENTRE THREE

from straws and pipe cleaners. Their chal-
lenge was also given orally. They were
to find out whether or not the skeleton
of the cube would stand upright and hold
its shape. If it wouldn't, the children were
to discover a way to make the structure
rigid by adding more straws.

Children were encouraged to work in
twos or threes at this centre so that they
could discuss several ideas and try them
out before deciding which one worked
best. This centre was, by the way, a real
study in "citizenship" as well as geometry,
since a discussion involving ideas is not
always a placid one, and children some-
times need help to work effectively in a
situation such as this.

The day before this lesson, children
had traced the faces of the large wooden
solids onto sheets of paper and reproduced
the shapes of the faces on geo-boards.

CENTRE FOUR

CENTRE FIVE

At this centre children worked individu-
ally with an assignment card as a guide.
The instructions involved choosing a cer-
tain number of straws in order to build
a shape that would stand by itself. The
boy in the picture has experimented with
six straws, joining them at the vertices
with pipe cleaners. He was, of course,
amazed at the resulting tetrahedron, which
he called a "four-sided pyramid". Children
are encouraged to invent their own names
for many shapes, since in some cases, par-
ticularly in Grade 1, the technical name
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CENTRE SIX

is much too difficult for many of the
children.

There are many games available which
will help children progress in their under-
standing of spatial relationships. The game
included in this lesson was originally
known as "Kahla", an Egyptian game
sometimes played on folded paper with
popcorn for counters. On large cardboard
sheets with thick plastic discs for counters,
our version of Kahia, known as "Cala-
bash", encourages estimation visually and
mentally. The children follow the rules of
the game and attempt to win all or most
of the calabash counters from a partner.
The players then record their scores on
the blackboard and move on to another
division.

Following are other examples of games
which develop geometry concepts:

1. Contack
2. Hex
3. Three-dimensional tic-tac-toe (Cubic)

4. Parquetry blocks involved in games
5. Chinese Checkers

CULMINATION

At the end of the lesson period, various
reports are given orally by children work-
ing at stations 3, 4, and 5. The chart from
centre two is developed co-operatively by
individual members of the class while
others mark their work (anyone who did
not reach the centre picks up an extra
chart, and works along orally with the
rest of the class, filling in answers if he
wishes to do so). The lists from centre
one are read aloud by individuals and
pinned around the "Shapes Table" in a
corner of the classroom. The blackboard
containing the individual scores from Cala-
bash is examined, and a discussion follows
concerning the person who won by the
highest score, combinations of different
scores, and the possibility of recording
a "score in the hole" for some people.



Focal point J. Fred Weaver

The quest for an improved
curriculum*

J. R. MACLEAN
Assistant Superintendent, Curriculum Division
Ontario Department of Education

EDITOR'S NOTE.Mr. MacLean was one
of tr e. speakers at the Calgary Meeting of
the National Council of Teachers of Mathe-
matics in August 1966. His article com-
plements that of Janet Black in this issue
of the journal, "Geometry Alive in Pri-
mary Classrooms."MARGUERITE BRYDE-
GAARD,

For the past several years teachers have
been almost overwhelmed by successive
waves of propaganda that has generally
been critical of our "traditional" mathemat-
ics programs. Unless set notation and sym-
bolism, non-decimal numeration, modular
arithmetic and strict attention to correct
terminology (such as distinction between
number and numeral) were included in
our courses of study, we were not up-to-
date. Our students would be ill-prepared
for their responsibilities in the Space Age
and we were effectively sabotaging the fu-
ture of our country.

It is unfortunate that this "new math"
concept has confused as much as it has
changed elementary school mathematics.
There are many reasons why this has oc-
curred, but the most significant are these:
the haste with which the new ideas were

*Reprinted by permission of the author from the
Ontario Mathetisatic. Gasette (special elementary school
ed.), September 1968.
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applied; a lack of understanding on the
part of some of the mathematicians design-
ing the programs about how children learn
and what they need to learn; the general
unpreparedness of teachers and supervisors
which has fostered the idea that the "new"
completely replaces the "old" rather than
clarifying, supplementing and providing
more meaningful approaches; and finally,
the lack of unbiased evaluation of the new-
er materiali and techniques.

The K-6 Kingston Study Group

Conscious of these weaknesses and yet
alert to the necessity of applying new
knowledge, both in mathematics and in
pedagogy, to the development of new and
better programs in elementary school math-
ematics, the Ontario Mathematics Commis-
sion, with the financial support of the
Ontario Curriculum Institute, undertook the
task of exploring and collating the various
experiments and approaches that are being
carried out in Ontario and elsewhere. The
Commission appointed ten teachers to a
committeeeight directly involved in ele-
mentary schools, one from the high schools
and one from the universitiesand asked
them to suggest possible revisions of the
present curriculum and to make recom-
mendations for the implementation of the
suggested changes.

The K-6 Mathematics Study Group met
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during the summer of 1965 at the Royal
Military College in Kingston, and produced
a report which was subsequently published
by the Ontario Curriculum Institute. This
report has been described as one of the
most significant documents to appear on
the educational scene in many years. All
teachers who are concerned with the teach-
ing of mathematics are urged to read this
report. Some of the recommendations of
the committee have been included in the
Interim Revision in Mathematics recently
published by the Ontario Department of
Education.

The K-6 Experimental Project

The proposals in the report for im-
plementing a new program have been con-
sidered by the Commission, especially item
7 "that a full time group be established
. . . to prepare teachers' handbooks and
other materials for selected topics in specific
grades so that extensive experimental work
can be carried out in the academic year
1966-67." Once more the Curriculum In-
stitute agreed to finance a project that
would involve many teachers and students
throughout the province. It was decided
to prepare materials for the study of geom-
etry in Grades 1, 2, and 3, and Graphs,
Mappings and Relations in Grades 4, 5,
and 6. Selected teachers from all sizes of
school jurisdictions met in Toronto during
July for training sessions in presenting the
materials.

Perhaps the most vital aspect of this ex-
perimental program is the change in ped-
agogical techniques which in turn transform
the classroom from the usual array of stu-
dents sitting in desks arranged in neat
rows to a virtual "laboratory for learning."
Pupils are actively engaged in solving prob-
lems with physical materials that they can
manipulate themselves. This approach is
illustrated by an ancient Chinese proverb

"I hear, and I forget;
I see, and I remember;
I do, and I understand."

Many of the ideas and techniques pre-

sented in the Nuffield Mathematics Teach-
ing Project publications have been adapted
for use in the experimenting classrooms.
The writing team was greatly encouraged
through the knowledge that other people
in other countries were working with ideas
not too divergent from its own.

The following sample lesson or more
appropriately "experience description" has
been taken from the outline prepared by
the writing team and presented to the teach-
ers attending the summer course. Running
through it is the central notion that chil-
dren must be set free to make their own
discoveries and think for themselves.

Lesson Topic: Examining Faces

This lesson was presented after three
previous periods spent examining, discuss-
ing and manipulating solids. Each student
picks a partner to work with during the
lesson period. The partners are given a
piece of paper and crayons, and each
pupil chooses a solid from the set provided.
Their assignment is to trace the fiat sur-
face of each solid onto a sheet of paper,
attempt to select shapes that are different,
and then discuss why they are different.

The class might choose a circular face
to examine. One member is appointed
secretary-chairman. Each pupil should draw
a ring around the circular faces they have
traced and suggest things that make the
circle different from the other shapes. The
secretary records all suggestions, and the
class then evaluates the chart he produces.
Other faces should be examined in a sim-
ilar manner before students proceed to the
activity centres, indicated in Figure 1

(next page).
(Activity centres are suggested as one

possible way of providing for experimenta-
tion-thinking-communication, which seems
to be an obvious line of development for
a child.)

The students proceed from one activity
to another, working through assignment
cards, chart activities, logic games and
measurement experiences. When they finish
an activity they are allowed to move to
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1. GEO-BOARD

Geo-boards are square (in this case 12"
by 12") boards with nails driven in at 1"
intervals. Assignment cards could be similar
to the following:

Geo-board

4
Geometry
Lotto

Enlarging shapes

Creating
new shapes

I I 8

Pe imeter
of faces

Logic
Game

Identi-
fying

solids
by face

shapes

Face finding via Assignment Card

FIG. 1.-A suggested classroom arrangement
showing activity centres.

any other centre provided there is an empty
space. The teacher moves about the room,
guiding, encouraging and helping when re-
quested. In this classroom atmosphere the
teacher's role is not to stop the children
talking, but rather to ensure that there is
something worthwhile for them to talk
about. There is a place for lively discus-
sion, and the quality of the discussion will
be directly dependent upon the quality
of the class-teacher relationship.

Do not expect any miraculous change
in the behaviour of children immediately
after introducing these experience-centred
classroom groupings. Initially it may be
better to try fewer groups and allow the
pupils time to adjust to the freer atmos-
phere and to develop respect for the opin-
ions of others. This latter attribute follows
smoothly the respect the teacher shows
for the student's point of view. Remember,
real discussion, wherever it appears, is
provoked by experience. The situation sup-
plies the starting point; the discussion that
ensues should widen the children's ho-
rizons and open up many new avenues of
exploration.

Here are brief desci iptions of the eight
activities.

Assignment:

1. On your geo-board make all the faces
of the triangular prism.

2. Two of the faces are alike. What
shape do they have?

3. Three faces are alike. What shape
do they have?

4. Count the number of sides on one
triangle.

5. How many faces do you have on a
rectangle?

Check your answers on the back of
the card.

0

0

0 0
f3

0 o I o

o

geo-boards

1 assignment cards

0

Set of solids

FIGURE 2

Students may use elastic to recreate the
shapes of faces, answer the questions either
orally or on paper, then check their an-
swers.

2. ENLARGING SHAPES

Again students work from assignment
cards. They create designs using known
shapes and enlarge the same design on
graph paper.

Assignment Card Samples

1. Use graph paper to
design a house
use a triangle and a
rectangle.
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2. By making the sides
longer draw another
house. It will be
the same shape, but
it will be larger
in size.

3. How much bigger do
you think the new shape
is than the first shape?

Possible Results

FIGURE 3

3. LOGIC GAME

Four logic games are set out. Each set
contains a large bristol board sheet with
several shapes drawn on it, four different
colours of yarn and a set of cards in the
same four colours as the yarn. The cards
may be classified according to colour (red,

black

green, yellow or black), size (large or
small) as well as shape. Students develop
their own methods of placing the shapes
and yarn on the bristol board (Fig. 4).

4. GEOMETRY LOTTO

This game is played much like Bingo
except that colour and shape are used in-
stead of numerals. As flash cards are held

6 0WEI

A!OA

0 A () A-

A Gm ffI A

Ili % A Ma

flash card

disc to cover corresponding
* shape and colour

FIGURE 5

up by one student, other students cover
the corresponding colour of the same shape
with plastic discs.

III

black yam

red,
green
& yellow

c2

FIG. 4.All other shapes remain outside the set.

black

black

red, green
& yellow
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5. FACE FINDING, VIA ASSIGNMENT CARDS

At this activity two people work from
each assignment card. The cards are placed
on the table with a set of solids.

am
shaped
like the

flat surfaces
on some of the

solids. Make a list
of the solids that

have faces shaped
like me. Check your

answers CM the back.

FIGURE 6

6. IDENTIFYING SOLIDS BY FACE SHAPES

Students begin at point A and walk
around the table from Card A to Card I
listing the solids from which the surfaces
(both flat and curved) have been traced.
Then they repeat the rotation, this time
checking the answers on the backs of the
cards.

a

Card front

A

O
f=3

4 V

Card back

triangular
prism

b

FIGURE 7

7. PERIMETER OF FACES

The pupils use yarn to find the distance
around the faces of the solids, and fasten
the yarn to a graph with gummed mosaic
shapes.

i.e.

Distance around the faces of a square pyramid.

o

A

FIGURE 8

8. CREATING NEW SHAPES

Pupils work with solids, rulers and as-
signment cards similar to the following:

1. Trace a square face from one of your solids.
B

2. Label it in this manner: D"C
3. How many sides has it? How many corners?

4. Join point A to point C. Can you see 3 shapes now
List them.

5. Join point B to point D. Can you find 9 shapes now?
List the shapes.

6. Check your answer on the back.

FIGURE 9

Conclusion
In the 1966-67 session, the teachers

trained in Toronto in July 1966 will carry
the project further by experimenting with
the teaching of the topics and concepts
mentioned earlier. There will be three
phases to the experiment, each for ten
weeks' duration. In the fall, the material
will be taught for ten weeks in western
Ontario. It will then be revised, and tried
out in modified form in eastern Ontario
in the winter term, again for ten weeks.
Finally, after a second revision, it will be
taught for a further ten weeks in northern
Ontario in the summer term.

By means of these successive revisions,
it is hoped that the feasibility of both con-
tent and approach will be put strongly to
the test. All those involved look forward
to the experimentation with intense interest
and a fair measure of confidence in the lab-
oratory approach.
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Topics in geometr7 for teachersa
new experience in mathematics
education

CAROL H. KIPPS
University of California, Los Angeles, California

Carol Kipps, besides teaching courses at
the University of California, Los Angeles, is highly active with in-service
projects, among thew the Madison Project, the California Conference
for Teachers of Mathematics, and UCLA Extension.

Can teachers capture by themselves the
excited enthusiasm shown by children in
classes sponsored by such curriculum
groups as the Madison Project or Nuffield
Project? Can a teacher reared on lecture-
drill-homework classes feel and show the
drama inherent in "I do and I understand"
activities, in peer-group discussions, and in
concepts such as the concrete-ikonic foun-
dation of abstraction? A new course at
UCLA is focusing on these dynamic factors
so that teachers will know their value from
their own personal experiences and feel-
ings.

Geometry is the vehicle, and grades K-8
is the level. Geometry was chosen because
prospective teachers have little background
in geometry and very often fear having to
teach it. More and more geometry is being
introduced in the elementary grades.
Teacher-training research and the recom-
mendations of professional organizations

18

show that geometry is more troublesome
than arithmetic or algebra.'

Modem curricula aimed at optimal se-
quencing capitalize upon the child's early
curiosity about shapes, the relations be-
tween shapes, and patterns. Informal ex-
ploratory geometry provides the necessary
basis for later symbolization and abstrac-
tion. Also, an active learning approach
requires a different kind of teacher be-
havior. When small groups of students are
involved, the role of the teacher is more

1. See for example: Goals for Mathematical Edu-
cation of Elementary School Teachers: A Report of
the Cambridge Conference on Teacher Training
(Boston: Houghton Mifflin Co., 1967). Course
Guides for the Training of Teachers of Elementary
School Mathematics, rev. ed. (Berkeley: Committee
on the Undergraduate Program in Mathematical As-
sociation of America, 1968). Carol 1Cipps, "Elemen-
tary Teachers' Ability to Understand Concepts Used
in New Mathematics Curricula," THE ARITHMETIC
TEACHER 15 (April 1968): 367-71. Marilyn Suydam,
"Research on Mathematics Education, Grades K-8,
for 1968," THE ARITHMETIC TEACHER 15 (October
1968):53144.
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demandingand far more rewarding. As
the teacher moves from group to group lis-
tening to the dialogue, she must consider
when to ask a question, when to be silent,
and when to withdraw altogether.

Many people tend to teach the way they
have been taught. This can be a virtue as
well as a hazard. In the experimental class
taught at UCLA during the winter quarter
of 1969 and then repeated in the summer,
the class was conducted in the same way
that corresponding classes ought to be
taught in the elementary school. For not
only can the process be modeled, but the
teacher can evaluate it from personal ex-
perience, choosing appropriate learning
activities and peer groupings with greater
insight and precision.

Method

The course began with a discussion of
the goals pupils should achieve by the end
of the eighth grade. These behavioral ob-
jectives free the teachers from complete
reliance on the basic text and focus on
individualizing the learning opportunities to
achieve at the 100-percent level. The fol-
lowing objectives were suggested as basic
and minimal.

SHAPES IN GEOMETRY

1. The child will name tat or space figures
when shown a physical model or a pictorial
representation of the following: triangle, quadri-
lateral (square, rhombus, trapezoid, parallel-
ogram, rectangle), circle, ellipse, cube, cone,
rectangular solid, sphere, prism, pyramid.

2. The child can show where he would mea-
sure a flat or space figure to find the length of its
diagonals and its altitude. Also, the child can
draw a line on a pictorial representation to indi-
cate what he would consider the altitude or a
diagonal of the figure to be.

3. The child will state whether flat or space
figures have point (turning) symmetry or line
(folding) symmetry and define these ideas.

4. Given a physical model, a picture, a verbal
description, or a description in set language, the
child will state whether the figure is open or
closed and whether it is convex.

5. The child will construct a physical model
or sketch and will describe essential properties of
triangles and tetrahedrons; squares, rectangles,
cubes, and rectangular prisms; circles, cylinders,
cones, and ellipses; polygons, regular plane, and
space figures.

6. The child can name, define, and represent

P.7

the foundation elements of geometry: points,
lines, line segments, rays, planes, and angles.

RELATIONS BETWEEN. SHAPES

1. The child will pick out congruent shapes
and verify his decision by fitting. He will define
congruent figures as those that can be made to
fit together and use the notation = for congruent.

2. The child will classify from a set those
figures that are similar.

3. The child can identify examples, list ex-
amples, and sketch examples of the following
relations between geometric shapes: covering
(tessellate), separating, inside, outside, on, and
topologically equivalent.

4. The child will identify, construct, sketch, or
use set notation to describe the possible intersec-
tion sets for lines; li.;es and plane regions: lines
and solid figures; two plane regions; and a plane
solid figure.

5. The child will locate a given point on the
number line. Given a pair of coordinates (x, y)
that belong to the set of rational numbers. the
child will locate the given point on a number
plane.

MEASUREMENT

I. Given practical problems involving measure-
ment, the child will experiment (estimating, se-
lecting appropriate units, gathering data from
observations, constructing number scales, and
computing) and will attempt to verify his solu-
tion in some fashion.

2. Given a standard unit, the child can roughly
approximate and measure the length, area, and
capacity of common objects in appropriate
English and metric units. The allowable margin
of error will depend on instruments used, if any.
Since all measurements are approximate, the
child can cite methods for reducing errors of
measurement.

3. The child will verbalize that measurement
is the process of selecting an appropriate stan-
dard unit and finding a number that compares
the two The child will state generalizations that
follow, based on measuremerts and the tables or
graphs in which the measurements are recorded.

LOGIC AND PATTERNS

1. Given one, two, or three criteria for selec-
tion, for example, color (e.g., red), shape (e.g.,
square), and size (e.g., large), the child can
classify elements of a set in a way that shows
which elements have none, one, two, or three
attributes.

2. The child can determine the pattern of a
sequence of figures or numbers, continue the
sequence for at least three more elements, and
verbalize the criteria that he is using.

The big change in method in these ex-
perimental classes was that the university
students were asked to work together in
small groups on learning opportunities
designed for specific behavioral objectives.
What lecturing there was had to do mostly
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with learning theoryPiaget, Bruner,
Gagne. While solving the problems, the
students were encouraged to use many
kinds of resources, e.g., concrete embodi-
ments of various mathematics ideas such
as Dienes Multibase Arithmetic Blocks,
Cuisenaire rods, and geoboards. A curricu-
lum library was available that included
dictionaries, textbooks, and teacher guides
from the experimental projects such as
Nuffield and Madison Projects as well as
those for standard texts. The instructor
acted as a consultant, answering questions
with questions and suggesting references.
As discussions waxed about the definitions
of words such as diagonal and altitude, their
adequacy for the present two-dimensional
problems or similar ones in three dimen-
sions were debated. Preservice teachers
enjoyed "playing teacher" with each other
and using clues to draw out those more
naive mathematically. In an in-service situ-
ation, the instructor would have many "as-
sistants."

A second key difference from the usual
university course in education was the use
of evaluation as one of the learning activi-
ties. As part of the course, the students not
only answered questions, but proposed
them! Many educational taxonomies sug-
gest that asking an insightful question
aimed at a particular learning behavior is
a much higher cognitive skill than answer-
ing questions. After solving a mathematics
problem in their peer-group situation, stu-
dents were asked to devise a suitable test
item. At this point each person was asked
to make an individual contribution, but by
all means to consult with the group about
it. While the test item was to be based on
the stand objective, it might well include
prior skills or knowledge and need not be
a paper-and-pencil type of test item.

To illustrate this classroom activity, the
following is a page taken from the class
notes. The students were required to make
their own geoboards and to bring them to
class for this type of activity. First, as a
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teacher, each was to read the specific be-
havior objective. Next, as a pupil, each
had to solve the problem, discussing it with
members of s small group. Last, again
in the role of a teacher, each participant
was to read the sample test item and write
another or his own based on the objective.

SAMPLE CLASS WORKSHEET

Specific behavioral objective.Identify the di-
agonals of various plane figures and define the
idea of a diagonal.

Learning opportunity.Make the following
shapes on your geoboard. Transfer each figure
to dot paper and draw in all the diagonal lines
using a red pencil. In which shapes are the
diagonals of equal length?

D

C

Test item.Define what you mean by the term
diagonal. Draw a shape that has no diagonal and
tell why it doesn't by applying your definition.

Test item.Does a diagonal necessarily bisect
the angle at that vertex?

Comments.A follow-up discussion might
develop the idea of whether the definition given

would work for space figures, or for a line joining
two vertices which is not a side.

Evaluation

This methods course in mathematics
education at UCLA is organized primarily
to develop

(1) skill in planning and evaluating
learning opportunities in mathe-
matics for pupils;

(2) skill in using the Socratic approach;

(3) knowledge and skill in applying ba-
sic concepts of informal geometry.

At frequent intervals, test items written
by the students on the worksheets were
reviewed by the instructor and returned
with suggestions or comments. Grades
were not given for these worksheets, be-
cause it was hoped that the content and
experiences would foster interest in the
learning activity rather than in some ex-
trinsic reward. Relevance to the specific
objective and mathematical correctness
were checked. Creative style and elegance
were noted with positive comments. It was
a matter of considerable delight and aston-
ishment to the instructor when not one
member of the class of 44 asked about
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getting a "grade." This attitude is most
appropriate to a study of teaching mathe-
matics, for the "new math" was introduced
not merely on the claim that it represented
more important content but equally on the
argument that it would build a new spirit
of inquiry and creativity.

Grades for the course were assigned on
the basis of an examination focusing on
the methodology. Here is a sample ques-
tion:

Select one of the objectives from above and
describe three learning experiences that you
could provide to enable children to achieve the
objective. Write one learning experience for
each of the following levels:
Enactive (sensory-motor)
Ikonic (representational)
Symbolic (abstract)

Continual feedback of geometric content
was possible during the class periods, since
the instructor could spend time with a small
group or an individual student at no ex-
pense to the rest of the class. It is the rare
student who will display his ignorance in
a conventional classroom; but in the small-
group approach, important questions are
readily raised and discussed. When a stu-
dent works in a small group, he finds it
much easier to express his confusions
enough to enable others to help him.

A term paper on a mathematics topic
selected by the student was required by the
course. The basic text was broadly repre-
sentative of arithmetic, algebra, and geom-
etry. Prior to the use of the geometry notes

0")

and discussion "in fours," few students had
selected a topic from geometry for this
paper. It is of note, then, that 28 out of the
44 felt comfortable with geometry and did
their paper in this area.

Conclusion

Prospective teachers have little back-
ground. in geometry and very often fear
having to teach it. It is apparent that many
potential teachers exposed to this approach
will come away with a good feeling about
geometry, some of the confidence needed
to teach geometry, some exploratory activ-
ities they can use with children, and a much
broader knowledge than that normally
obtained from a straight geometry or
mathematics course.

Some very important questions cannot
yet be answered. Does this approach to
teacher training tend to make the content
easier to retrieve and to reconstruct? Will
teachers include geometry in their lessons
and use appropriate manipulative appa-
ratus and resources beyond the pupil text?
A follow-up is planned in the form of a
questionnaire at the end of the first teach-
ing assignment.

Student evaluations of the format were
enthusiastic, and they expressed attitudes
toward studying mathematics as well. One
student wrote, "I think you should keep the
course as it is, because the workshop at-
mosphere is what is needed in the class-
room, and we as prospective teachers
should practice in the same atmosphere."
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InstructionTechniques
Instruction! This is the key word in any teacher-learner relationship.
The involvement of the learner with the subject matter is directly
related to the teacher's instructional procedure. For genuine involve-
ment, good instructional techniques and principles must be generated.

In this book the articles on instruction are divided into two groups
according to whether they deal with techniques or rationale. These are
arbitrary categories, designed to facilitate reader interpretation. Tech-
niques for instruction are the vital elements that lead to and are derived
from involvement. A rationale for techniques is often difficult to
express. Some fine teaching may occur fortuitously, but it is generally
true that good teaching grows out of good rationale and commendable
planning. Without a rationale, a technique is scarcely better than a
gimmick, time-occupier, or dramatic presentation.

The involvement of the learner is a function of instruction. Without
effective instruction, few children discover the joy and excitement of
mathematics. The techniques and methods of teaching geometry lend
themselves to a creative, mathematical involvement of the learner.

Early instruction in geometry should be termed environmental ge-
ometry because much of the learning is fostered by challenging the
child to discover his surroundings. Born into and enclosed in a three-
dimensional world, the child has ready access to geometric models.
Under the skillful hands of a good teacher, he can be moved to the
excitement of informal geometry and later led to the thrill of elegant
geometric abstraction.

Mirrors, models, toys, and Mobius bands are some of the tools for
environmental geometry. The following articles present accounts of
teacher-proven techniques that use these and other readily available
materials. Reporting the use of a mirror and some cleverly developed
cards, Walter describes an approach to symmetry that can be used with
older students as well as very young children. Spatial perceptions and
ideas of geometric transformation are by-products of this approach.

Alspaugh pairs two mirrors to give a kaleidoscopic effect when lines
and models are viewed in them. Interesting ideas of symmetry, geo-
metric form, and pattern can be developed using this approach. Tilt.
content discussion of symmetry by Dennis nicely balances the tech-

23
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niques and methods of Walter and Alspaugh. The teacher will need to
study the ideas of symmetry to be effective in teaching them. Interest-
ingly enough, Forseth and Adams reverse the traditional method of
using art to teach geometry. They first introduce various transforma-
tions and then use them as a means to develop art form and pattern.
The fusing of art and geometry is clearly presented.

Topological ideas are somewhat new to the study of geometry. Piaget
has shown that children develop intuitive ideas of topological geometry
before those of traditional Euclidean space. D'Augustine illustrates
how a teacher may develop topological generalizations using common
experiences of the child. His development is followed by that of Clancy
in which the M8bius band is used as a means to discuss dimension.
From the study of dimensions, it is but a small step to the one- and
two-dimensional creatures of fanciful writing developed by Carrol's
class. Carrot relates the imaginative expression of her children to the
ideas of dimension and geometric abstraction.

Milk cartons are reasonably easy to obtain. With these convenient
materials, a teacher guided by Walter's second article can develop
excellent lessons dealing with nets, patterns, and generalizations. As
the reader inspects these ideas, questions of volume and volumetric
relationship may be raised. Vincent, in a very brief note, gives a fine
method for comparing the volumes of the cylinder and the cone. Her
technique is easily modified for other volumetric as well as area com-
parisons.

Any survey of instruction in geometry would be incomplete without
some mention of the useful geoboard. Smith, in one of the earliest
articles on techniques, discusses and illustrates the geoboard (peg-
board). Liedtke and Kieren also discuss the use of the geoboard in the
context of early childhood education. The results obtained suggest
experiences that could be used for preschool and kindergarten educa-
tion. Another device that can be used for developing ideas of shape,
congruence, vocabulary, and relationships is a Tinkertoy set. Richards
shows how Tinkertoys can be effectively used in geometry. As with
other devices, the geoboard and Tinkertoy set can be best used by the
teacher who knows the content of the geometry to be taught. Jackson
provides some of this content in his discussion of congruence and the
relationship of geometry to measurement. In the final selection in this
grouping of articles, Jackson weds the technique to the subject-matter
content.

Taken together, these readings indicate the direction a teacher may
go. The ideas expressed by the authors are creative and provide motiva-
tion for the development of a teacher's own approaches. Those who
deal directly with children will find this selection of articles of particu-
lar importance and practical usefulness.

9()



An example of informal geometry:
Mirror Cards*

MARION WALTER
Educational Services Incorporated, Watertown, Massachusetts

Marion Walter is a part-time mathematics instructor at the Harvard University
Graduate School of Education. She is on the staffs of Educational
Services Incorporated in the Elementary Science Study and the Cambridge
Conference on School Mathematics. She teaches mathematics to the
students in elementary school education at the' arvard Graduate School of Education.

The need for informal geometry, es-
pecially in the earlier grades, is being
recognized by educators, psychologists, and
matnematicians. The Mirror Cards .vere
created by the author to provide a means
of obtaining, on an informal level, some
geometric experience that combines the
possibility of genuine spatial insight with
a strong element of play.

The basic problem posed by the Mirror
Cards is one of matching, by means of a
mirror,' a pattern on one card with a
pattern shown on another card. For ex-
ample, can one, by using a mirror on the
card shown in Figure 1, see the pattern
shown on the card in Figure la?

FIGURE 1 FIGURE la

This work was begun while the author was work.
ing during the summer of 1963 with the Elementary
Science Study, a project supported by grants from the
National Science Foundation and administered by Edu-
cational Services Incorporated, a nonprofit organization
engaged in educational research. She would like to
thank the members of the group she worked with that
summer and the group in optics of the previous sum-
mer for their help and encouragement; she is especially
grateful to Professor Philip Morrison, Mrs. Phylis
Singer, and Mrs. Lore Rasmussen,

The reader should have a small rectangular pocket
mirror handy before reading on.

25

The problems range from the simplest, such
as the one shown above, to more difficult
ones, such as the one shown in Figures 2
and 2a.2 Some patterns are possible to
match and others are not.3

=
FIGURE 2

FIGURE 2b

FIGURE 2a

FIGURE 2c

Using the mirror on the card shown in Figure 2, which
of the patterns shown in Figures 2a, 2b, and 2c can
you make?

Each box of Mirror Cards contains, in addition to
mirrors, 170 cards arranged in fourteen different sets.
Although the instructions for the sets vary, the basic
problem is the same for all the sets and is the one
described above. A trial edition of Mirror Cards was
produced and copyrighted by the Elementary Science
Study in June 1965. They are being used on a trial
basis in over 250 classrooms around the country. The
author would like to acknowledge the help received
from Mrs. A. Neiman, Mrs. F. Ploye'r, and Mrs. J. Wil-
liams in editing the guide and producing the cards.

The position of the pattern relative to the edge of
the card is to be ignored.
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We have noticed that the children usually
find the colors and shapes pleasing and
enjoy the challenge presented by the cards.
They do not think of this work as "mathe-
matics," and they often find the cards
stimulating over and above the actual
geometry involved. The cards may be a
means of reclaiming the children who al-
ready dislike mathematics or are bored
or frightened by it. The cards do not call
for verbal response from the children, and
no mathematical notation is needed. Closer
connection with science and mathematics
classes will be explored by the author in
the future, since the cards can give insight
into some mathematical and physical
principles.

One advantage that the cards have is
that the children can see for themselves
whether or not they have made a pattern.
They don't need to resort to authority to
check whether they have solved the prob.-
lem correctly. In addition, while playing
with the cards they are, in effect, constantly
making predictions and are immediately
able to test these predictions and amend
them, if necessary; and it is fun to do so!
Thus, while working with the cards they
should gain confidence in their own powers

and learn through experience the nature
of the scientific method.

While moving the mirror around on the
cards, the children notice and experiment
with the position of object and image in
relation to the edge of the mirror. The
player can decide where to place the mir-
ror; and he soon learns that he can control
its position, but that for any given position
of the mirror he cannot control the position
of the image!

The students also learn that a mirror
does not carry out a translation. (See Figs.
3, 3a, 3b.)

FIGURE 3 FIGURE 3a Flamm 3b

Can one by using mirror on Figure 3 make the
patterns shown in Moores 3a and 3b? alas, the
mirror does not carry out translation!

They learn by experience that congruence
of two parts is a necessary but not a suf-
ficient condition for a pattern to be made
by use of a mirror. Most children do not
know the expression "symmetric with re-
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spect to a line" or "reflection in a line."
They may, nevertheless, by using the cards,
gain experience that will enable them to
understand the concepts that these expres-
sions describe. This does not imply that
they could give, or should be expected to
give, a formal or verbal definition of these
expressions. Eventually they do notice that
for a pattern to be reproducible by use of
a mirror, it must have two parts that He
on either side of some line and that these
must "match exactly." They soon learn,
for example, that the pattern shown in
Figure 4a cannot b6 made from the pattern
in Figure 4, and they probably have a good
feeling for why this is so.

FIGURE 4 FIGURE 4a FIGURE 4b

Pattern 4a cannot be obtained from 4. What about
the pattern in 4b?

The cards provide opportunity to prac-
tice recognizing congruent figures and se-
lecting parts of figures congruent to another.

FIGURE 5 FIGURE 5a5a

When mud you place the mirror In Figure 5 to see
the pattern shown In Figure 3s?

The children must be observant, not only
about a shape and the position of that
shape, but also about its colors. Some of
the patterns match in shape but not in
color.

They may also notice a variety of ge-
ometric properties of figures. Consider, for

example, the circle. By putting the mirror
on a diameter they can see the whole circle.
More than that, any diameter will do and
any chord not a diameter will not do. This
may give young children their first feeling
for a diameter of a circle, long before they
know the word "diameter."

With the diamonds (see Fig. 6) they
notice that there are two places where the
mirror may be placed to enable them to
see the whole diamond. On the other hand,

O
FIGURE 6 FIGURE 7

the pattern shown in Figure 7 does not
have this propertyto the surprise of
many!

Or, again, take the triangle (see Fig.
8): the children may notice that the effect
of putting the mirror along AB is in some
way "the same" as that of putting it along

FIGURE 8

BC, but that it is quite different from that
of putting it along AC. What about BD?

Other patterns on the cards, such as the
ladybugs, arrows, etc., can b: explored in
similar ways.

For a few cards the children can obtain
patterns that look somewhat like the one
required but are not congruent nor actually
similar in the mathematical sense. I intend
to devise cards where congruent and similar
patterns are obtainable, and similar but not
congruent ones.

Unfortunately, none of the present cards
have circles with arrows on them to show,

90
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perhaps more clearly, that the orientation
gets reversed under a mirror mapping or
reflection. Thus Figure 9 becomes Figure
9a.

FIGyRE 9 FIGURE 9a

The concept of orientation is, of course,
brought out by the cards, although the
arrows are not used for this purpose. Often
patterns with orientation reversed and not
reversed are included to make the idea
more obvious. Examples taken from the
ladybug and the circle set are shown below.

FIGURE 10 FIGURE 10a FIGURE 10b

Can one by using the mirror on Figure 10 obtain the
patterns shown in Figures 10. and 10b respectively?

FIGURE 11 Rama Ila FIGURE 1lb

Can one by using the mirror on Figure 11 obtain Ale
patterns shown in Figures 11r. ,.nd llb respectively?

The fact that a mirror does not carry
out a rotation in the plane is often masked
by the symmetry of the figure. For ex-
ample, one can make Figure 12a from
Figure 12, but not Figure 13a from Figure
13.

04*
FIGURE 12 Flame 12a

The imagined placement of points "A" and "B" illus-
trates the fact that the mirror does not "rotate" the
figure. Actually the mirror "flips" the image. (Points
"A" and "B" are not marked on the actual cards.)

i5,1=11

FIGURE 13 FIGURE 13a

The cards may be used at any age level.
They have been used by children as young
as five and by sophisticated professional
scientists or mathematicians. It is interest-
ing to note that some adults who "know

.M
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all the rules" verbally (such as "There must
be a line of symmetry" or "Image distance
= object distance") often have more dif-
ficulty. in working through the sets than
children who have not yet memorized such
phrases. The one barrier to the effective
use of the cards by adults appears to be
an ingrained habit of respect for authority.
Adults often do not want to rely on their
own ability to see whether they have made
a pattern correctly.

When the children find the problems
becoming too easy, they may want to add
the rule, "You may put the mirror down
only once for each pattern," so that all the
trial and error must go on in their heads.
They may wish to make some of their own
cards. When, as happens often, children
are able to predict withnut using a mirror

at all whether a pattern can or cannot be
made, they will have a clear demonstration
of the power of reasoning based on ex-
periencei.e., that it is possible to predict
results with confidence by thinking rather
than doing! (And they are able to check
their thinking if they wish.) In this way
they are savoring an essential part of the
nature of rational thought.

There are many questions that still need
to be answered. I meniion just a few. Will
use of the cards make children more ob-
servant about other geometric pattern! I
Will it enable them to see figures within
figures more easily? Does it improve their
ability to visualize? Will they be able to
describe patterns more clearly? Will it
help or hinder cl-adren with reading dif-
ficulties?

EDITORS' NOTE. Current information about Mirror Cards ( #18418)
and Mirror Cards Teachers' Guide (#18417) can be obtained from
Webster Division, McGraw-Hill Book Co., New York.

is
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Kaleidoscopic geometry

CAROL ANN ALSPAUGH

Caro! Ann Alspaugh is doing research for her doctoral dissertation
at the University of Missouri, Columbia, Missouri. She formerly taught
mathematics and computer programming at Southwest Missouri State
College and at other colleges and universities.

Kaleidoscopi.4aAeometry is an interesting
type of mirror getmetry that could be uti-
lized to introduce tiometrical topics such
as regular polygons, 1A,:iordinates of points
in a plane, reflections, symmetry. Most
children enjoy the pos4le explorations
offered by this geometry; ;which would
make it useful to the teacheN desiring to
develop interest and motivatiot4when in-
troducing new materials.

The physical materials needed fc-tk this
geometry are simple and inexpensive. Nro
mirrors are hinged together either by gluirrz.
them to one piece of cardboard or by using',44
masking tape. In this way, the mirrors may
be set up at any desired angle on a table or
folded together to facilitate easy storage.
Unbreakable mirrors are now available on
the market and could be used.

Students at the fifth- or sixth-grade level
would be ready for this geometrical experi-
ence. By this time, the student would have
studied various polygons, be familiar with
the use of a compass and protractor, and
know that there are 360° in a circle. An
interesting point about this unusual geom-
etry is the seemingly unlimited number of
mathematical concepts that can be illus-
trated as the angle between the two mirrors
is allowed to change. When these mirrors
are placed in front of them, most students
and teachers will find some fascinating
challenges as they look into the new world
appearing before their eyes. A few of the
concepts that are possible to illustrate are
presented on the next page. However, for
maximum learning and appreciation on the
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part of the student, he should be allowed
to discover these concepts himself by physi-
cal manipulation of the materials in a
laboratory situation.

1.

2.

3.
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Using a wood cube (or a similar object)
placed in he center of the table between
the positiouzd mirrors, it will be ob-
served that athe angle 0 between the
mirrors increasetk, the number of cubes
(images) decreasL to a minimum of
2 when 0 = 180°, L:nd increases with-
out bound as B 00.

The number of images, t'..07rhere I in.
cludes the original object): is related
to the angle 0 by the followine.iDrmula:
I.0 = 360°.
When 0 = 120°, three images are sC-?,n,
and the following geometrical construct,
tions are possible by drawing one line
segment on the table between the mir-
rors (a ruler or extendable curtain rod
could be used as a line segment):
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a. equilateral triangles (any other kinds
of triangles are impossible to con-
struct)

b. circles (by making one arc between
the mirrors)

It is interesting to discover that squares,
pentagons, etc., cannot be constructed
when the angle between the mirrors is
120°. When the angle is varied, it will
be noted that the constructions that can
be made will also vary. However, it is
always possible to construct a circle, and
any polygons that can be constructed
will have equal sides.

"n
arc

ebb

4. 0 = images Possible Constructions

180° 2
120° 3
90° 4

72° 5
60° 6

51 3/7° 7
45° 8
40° 9
36° 10

parallel lines, circles
triangles, circles
squares, parallelograms,
parallel lines, circles
pentagons, circles
hexagons, triangles,
circles
septagons, circles
octagons, squares, circles
nonagons, circles
decagons, pentagons,
circles

The preceding table might be an exam-
ple of a student's summary of the con-
structions he discovered that were possi-

ble to make. Of course, the table could
be extended.

5. With the mirrors at an angle of 90°,
graphing in the coordinate plane can
be nicely illustrated. For this purpose,
the teacher or student should cut a piece
of poster paper to lie on the table and
fit between the mirrors. Then a coordi-
nate system may be ruled off on the
paper, using the point where the mirrors
meet as the origin. As a point is located
on the paper, the reflections will simul-
taneously locate the points in the other
three quadrants.

Many types of poster paver overlays
cwild be designed by the creative student
and teacher to illustrate mathematical and
artistic ideas. Children who would be too
young to make some of the suggested tables
and generalizations would enjoy creating
or copying kaleidoscopic designs and
polygons using colored parquetry blocks,
straws, sequins, etc.

It is hoped that this paper has suggested
that the principles underlying the design
of a child's toy kaleidoscope have many
teaching possibilities for elementary mathe-
matics.
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The geometry component of the elemen-
tary school program is th.:, basis of much
discussion today. Many of the efforts in
this area of mathematics have approached
elementary school geometry from the point
of view of Euclid's postulates. Another ap-
proach to geometric topics is based on the
idea of symmetry.* A unit using this ap-
proach would involve five to six weeks of
class time and would do much to augment
the elementary school geometry program.

The first idea that we need to make clear
is the meaning of the phrase "exactly alike"
as it is used in geometry. Students already
have opinions on the meaning of this
phrase, but their opinions frequently differ.
Agreement is needed on an experimental
test, the results of which will be acceptable
in cases of differing opinions.

FIGURE

A pair of figures that appear to be ex-
actly alike are shown in figure 1. How can
we tell for sure? The test that we agree
upon is to trace one figure 9..nd then try to
match the tracing with the other figure.

* The ideas presented here grew out of my asso-
ciation with the University of Illinois Committee on
School Mathematics, I wish to express my gratitude
to Professor Max Beberman for the opportunity to
participate in the UICSM activities and for his gen-
erous counsel.

32

This match need not be achieved in any
particular position or orientation. It may
be possible to achieve a matching in several
positions. It must be possible to achieve a
matching in at least one position (fig. 2).

FIGURE 2

When it is possible to exactly match a
tracing of one figure with another figure
we say that the figures are congruent, and
the various matchings are called congru-
ences.

Teachers should create many opportuni-
ties for children to experiment with the
"trace and try to match" process described
above. It is from such experiments that
basic intuitions about congruence are de-
rived. These intuitions will become a foun-
dation for the discovery and exploration of
more complicated properties of geometric
figures. For example, by experimenting
with a tracing, congruences can be immedi-
ately separated into two types:

1. face-down congruences for which the
tracing must be turned over to make it
match (fig. 3)

FIGURE 3
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2. face-up congruences for which the trac-
ing is not turned over, just moved
around to make it match (fig. 4)

FIGURE 4

Having distinguished between these two
types of congruences, we concentrate on
the effects of each of them. We ask ques-
tions like the following:

1. For the face-up congruence of these figures,
with what part of triangle DEF does the
tracing of segment AB match?

2. For the face-down matching, with what part
of triangle DEF does the tracing of angle
ACH match?

3. Again for the face-down matching, with
what part of triaagle DEF does the tracing
of segment AC match?

Some important facts to observe are
these:

I. For both matchings,
matches point E.

2. For both matchings,
AC matches segment
individual points of
match in the same way

the tracing of point B

the tracing of segment
DF but the tracings of
the segments do not

Work of this nature gives an introduction
to the notion of corresponding parts for a
congruence, and, of course, since the trac-
ing is, used to match these parts, corre-
sponding parts of congruent figures are
congruent.

The next step in this development is to
apply the notions of congruence and cor-
responding parts to a single figure rather
than to two figures. Specifically we study

self-congruences of a figure. Again these
are of two typesface up and face down.

Figures with face-down self-congruences
have a very important property. There is a
line each of whose points corresponds with
itself for that face-down matching. For ex-
ample, consider the triangle in figure 6.

AA C

FIGURE 6

For the face-down self-congruence of this
triangle, point B corresponds with itself.
There is also a point of segment AC that
corresponds with itself for this matching.
In fact, if we draw a line through these two
points, each point of that line correspoilds
with itself for the face-down congruence.
It is such lines that we shall call lines of
symmetry.

Through this definition, each line of sym-
metry is associated with a face-down con-
gruence of a figure. So when given an ex-
ercise such as to find all lines of symmetry
for a particular figure, the student need
only count the face-down matchings of a
tracing. After a little practice, students eas-
ily move to the stage of just thinking about
the tracing. It is important to note, how-
ever, that when all else fails, a tracing will
make answers to questions quite obvious.

We are now ready to begin our study of
triangles. It is assi.laed that many of the
figures used in the previous work have been
triangles. Students should see and experi-
ment with triangles with no lines of sym-
metry, triangles with one line of symmetry,
and triangles with three lines of symmetry.
An important exercise is to have students
try to sketch a triangle with exactly two
lines of symmetry. Another important ex-
ercise is to try to sketch a triangle with a
symmetry line that does not go through a
vertex.
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You will recognize the triangles with
one (or more) lines of symmetry as those
usually called isosceles triangles. Those
with three lines of symmetry are usually
called equilateral triangles. Having looked
at the possible line symmetries for triangles,
students are in a position to find properties
of each type of triangle. 1 example, con-
sider a triangle with one line of symmetry,
i.e., one face-down self-congruence (fig. 7).

FIGURE 7

1. There is a pair of congruent sides, because
for the face-down self-congruence the trac-
ing of one side of the triangle matches an-
other side of the triangle.

2. There is a pair of congruent angles, because
for the face-down self-congruence the trac-
of one angle matches another angle of the
triangle.

3. The symmetry line goes through the middle
point of one side, because for the face-down
self-congruence the tracing of one part of
this side matches the other part of this side.

4. The symmetry line bisects one angle (for
similar reasons).

5. The symmetry line "divides" the triangle
into two congruent regions (for similar rea-
sons).

At this stage some other important ques-
tions should be considered:

1. Could a triangle have a pair of congruent
sides without having a line of symmetry?

2. Could a triangle have a pair of congruent
angles without having a line of symmetry?

For each of these questions, evidence is
easily gathered from an experimental
sketch and a piece of tracing paper. The
properties of triangles with three lines of
symmetry are presented in a like manner.

Before classifying quadrilaterals it is con-
venient to introduce the notions of per-
pendicular and parallel lines. For perpen-
dicular lines we look at pairs of lines and
ask: In what cases is one line a line of
symmetry for the other? For example, here
are a dashed line and a solid line (fig. 8).

FIGURE 8

The dashed line is a line of symmetry for
the solid line. We can also show this with
a tracing.

Here it is important to have made clear
the idea that, at best, pictures of lines leave
much to be desired. For figures like tri-
angles, lines of symmetry appear cut the
picture in half. For lines, it is no longer
possible to judge lines of symmetry by
checking to see if the picture is cut in half.
An important observation is that when one
line is a line of symmetry for another, the
two lines make square corners with each
other. We say that two lines are perpen-
dicular whenever one is a line of symmetry
for the other.

For parallel lines we again look at pairs
of lines, but this time we ask if the lines
have a line of symmetry in common. Again
we can use a tracing (fig. 9). Parallel lines

FIGURE 9

are those lines which do have a line of
symmetry in common.
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The face-down self-congruences gave us
lines of symmetry. One type of face-up self-
congruence is particularly important for
the study of quadrilaterals. Sometimes a
figure has a face-up self-congruence for a
half-turn of a tracing. When this hap-
pens there is a point which corresponds
with itself. Such a point is called a center
or point of symmetry (fig. 10). Again it is

FIGURE 10

important to examine several figures for
points of symmetry, and to look for /.3or-
responding parts under these half-turn self-
congruences.

As we begin the study of quadrilaterals,
we notice one important feature not found
among triangt.s. Quadrilaterals may have
lines of symmetry that do go through ver-
tices or lines of symmetry that do not go
through vertices (fig. 11). So we introduce

FIGURE I I

the phrase diagonal symmetry line for those
that do go through vertices, and the phrase
nondiagonal symmetry line for those that
do not go through vertices.

When we classify quadrilaterals, we find
those with:

1. No lines of symmetry.

2. One line of symmetry.

3. Two lines of symmetry.

4. Four lines of symmetry.

5. A point of symmetry.

Notice that when quadrilaterals have two
or more lines of symmetry they also have
a point of symmetry. There are no quadri-
laterals with exactly three lines of sym-
metry.

As was the case for triangles, the usual
properties about congruent and parallel
sides, congruent angles, bisecting diagonals,
perpendicular diagonals, etc., follow from
the corresponding parts for the various self-
congruences.

This has been a brief discussion of the
topics involved, an appropriate sequence
for these topics, and some sample questions
at the various points of the development.
Probably the most important word of cau-
tion to the teacher is to allow pl,mty of
time for making experimental sketches and
for conducting tracing experiments. Even-
tually many students reach a point where
they can answer questions by merely con-
ducting a thought experiment, but very few
of them begin at this level.

Fl 0
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Combining art projects with math and
science is an ideal way of promoting crea-
tivity in children. They become aware of
how to use math and science; they learn
to make and solve creative problems; and
they have fun while doing it!

Symmetry is a basic geometric concept
and a common, pleasing design found in
nature, especially in leaves and flowers.
Art activities using concepts of symmetry
can be used with almost any grade and
with every child, from the slowest to the
brightest. The children will have fun mak-
ing fascinating designs, while at the same
time learning craftsmanship skills and
achieving ideas for various types of sym-
metry. With some modifications, these
activities can be used with any given grade.

Begin by showing the children examples
of pictures of strip patterns in such things
as architecture, pottery, tapestries, fabric,
leaves, flowers, caterpillars, or centipedes.
Older children may enjoy studying sym-
metry in physics, chemistry, and biology.
Molecular structure and X-ray crystallog-
raphy provide examples of geometric sym-
metry.

For materials, the children will need
sheets of paper (such as construction,
butcher, or bond), 3-by-5 inch index cards,
color crayons or felt-tip pens, tempera
paint, scissors, and common pins.

Here are seven basic strip patterns. The
process of making each pattern is called
an "operation" because you follow certain
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rules. The patterns vary in difficulty, so
choose whichever one best suits your class.

1. Repeating Patterns, a very easy one,
is made by simply moving the stencil a
fixed distance each time you trace it (fig.
1). Have each child make a stencil by
cutting an asymmetrical design in an index
card. The children can save the cut out
part for other patterns.

Lr
Fm. 1. Repeating Patterns

2. Translation Reflections is shown in
figure 2. Trace the design, flip the stencil
forward, and trace it again so that it looks
like a reflection of the first design. If you
are teaching this pattern to young children,
have them draw a line across their papers
(fig. 2). Ask them what they notice when
they fold the paper in half on the line and
hold it up to the light.

Flo. 2. Translation Reflections

3. Two Reflections is shown in figure 3.
Draw the pattern, flip the stencil over along
the right edge, and draw it again. This is
your first reflection. Now flip the stencil



again along the right edge and draw the
pattern. Now you have two reflections. The
children can test their reflections by draw-
ing lines between each pattern (fig. 3) and
folding the two outside patterns into the
middle.

Fro. 3, Two Reflections

4. Three Reflections is more difficult
and probably for older children only (fig.
4). For this one the children will need
tempera paint. Have them fold a sheet of
paper, dividing it into eight parts (fig. 5).

Flo. 4. Three Reflections

A C 1 E G

B i D i F H

Line I

Fro. 5. Procedure for Three Reflections

Put a blob of tempera paint in the top
left box (labeled "A" in fig. 5). Fold the
paper in half on line 1 and press to repro-
duce the paint blob on box B. Unfold the
paper and you have the first reflection.
Now fold the paper on line 2, press, unfold,
and you have the second reflection printed
in boxes C and D. (If the paint is drying,
apply more paint on boxes A, B, C, and
D). Next fold on line 3 and press to
produce the third reflection in boxes E, F,
G, and H. After the children understand
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the operation, they can make patterns with
their stencils.

5. Half-Turns is an easy pattern (fig.
6). Trace the stencil. Turn it 180° to the
right and trace it again in this position.
Move the stencil to the right while turning
it 180° each time you trace it.

garz croz
FIG. 6. Half-Turns

6. Half-Turns about a Point is a more
difficult pattern (fig. 7). Fold a sheet of
paper to divide it into six parts (fig. 8).
Mark points A, B, and C as shown. Label
the paper "part 1, 2, and 3" along the
bottom. Use a pin to hold the stencil at
point A while you trace the design in the
top section of the paper. Without removing
the pin, turn the stencil 180° and trace the
pattern in the bottom box. Remove the
stencil and cut on line 1. Holding the pin
at point B, turn part 1 of the paper 180°.
Lay part 2 of the paper over part 1 and
trace these two patterns. Next cut on
line 2 and rotate part 2 of the paper 180°
at point C. Lay part 3 of the paper over
this and trace these two designs.

Now tape the three parts of the paper
back together as they were originally and
you have a design made following the
operation of half-turns about a point. Ask

Flo. 7. Half-Turns about a Point

'An. 2

A B

Pert 2 pert 3Pert I

Flo. 8. Procedure for Half-Turns about a Point
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the children how this design differs from
the translation reflections design. At first
glance the two patterns may look very
similar to the children.

7. Glide Reflections combines the rules
of moving a certain distance and reflection
(flipping) the pattern along an axis (fig.
9). Draw a line on your paper to use as an
axis. The pattern should be above the line
(with part of it touching the line) as you
trace it. Move the pattern along the line
a certain distance to the right. Reflect (flip)
it below the line and trace it again. Move
the pattern along the line (below it) an
equal distance to the right. Reflect it and
trace again above the axis. Continue mov-
ing and reflecting the pattern alternately
above and below the axis.

Flo. 9. Glide Reflections

After the children understand some of
these basic operations, they should make
up their own. There are dozens and dozens
of operations that can be devised using
these basic ones. This exercise will cer-
tainly bring out the creativity in your chil-

dren. It also gives practice in inventing
rules and carrying out procedures.

Now that the children know what to look
for, they will enjoy finding examples of
strip patterns in nature and art. They
should be encouraged to bring all the
examples they can find and to tell the class
what operation was used to produce the
pattern.

The children can think up games using
these patterns. They might try to predict
what a pattern will look like when using
a certain operation. Then they can carry
out that operation and see how correct they
were. They can play games with partners.
One child chooses the operation, and his
partner produces the first step. The first
child does the next step, and so on.

These strip patterns suggest many ways
of decorating the classroom. Encourage the
children to make things using the patterns,
such as mosaics, placemats, wall hangings,
and paper chain designs. They can make
their patterns using different techniques,
such as block, potato, and sponge printing.
Have them try rubbings (crayons rubbed
over paper placed on object) with leaves
and twigs. Just remind them that they must
choose or invent an operation and follow
the rules throughout the pattern. After the
children make a few strip patterns on their
own, they can explain the operation to the
class or let the children guess the operation.
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Topological net "games" are being in-
cluded in contemporary junior high and
elementary school mathematics texts. The
"game" aspect is of questionable pedagog-
ical soundness. Wouldn't these topics be
of more value to the student if they were
introduced systematically and in such a
way as to lead the student to make certain
logical generalizations? Wouldn't these
topics be of more value to the student if he
"possessed" certain generalizations which
would enable him to create and solve
highly sophisticated net problems inde-
pendently.

This article will be an attempt to show
how one type of net problem (that of
traversing nets) could be developed in
both a logical and an intuitive way to lead
to generalizations which would enable a
student to create and solve "related" net
problems.

This article will presuppose that stu-
dents have had previous experience with
end points and cross points.

All examples will be intuitively treated
as follows:

Each situation will revolve around a
person attempting to deliver papers to
homes on a paper route. The following
rules will hold with respect to delivering
papers:

1 In no instance may the person delivering
papers get off his bicycle; he must con-
tinue riding until he can ride no further.

2 In no instance may the person delivering
papers leave the road.

3 In no instance may the person deliver-
ing papers go over a portion of a road
which he has previously traveled.

With this basic set of rules we can now
study specific situations of paper delivery.

Example 1. Two end point problems
(Fig. 1). Joe starts delivering his papers at

Figure 1

end point A. Can he deliver papers to the
house at point M? (Yes) Where will he
have to stop his bicycle? (Point B)

Example 2. Three end point problems
(Fig. 2). Joe starts delivering his papers at
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Figure 2

end point U. Can he deliver papers to both
houses? (No) What is the largest number
of houses that Joe could deliver papers to?
(One)

Generalization: I am thinking of a
delivery route with 5 end points. If there is
a house at each end point, could Joe deliver
papers to each house? (No)

If he must start at one of the end points,
what is the largest number of houses to
which he could deliver papers? (Two)
Why? Because as soon as he reaches
another end point he must stop.
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What is the largest number of end
points a problem can have in order to have
a solution? (Two)

To make further generalizations it will
be necessary that we intuitively develop
the idea of odd and even cross points.

Example 3. Joe is on one "road" (Fig.
3). When he reaches the cross point he will

Figure 3

have a choice of two "roads" to take.
Since 1+2 =3 and 3 is an odd number, we
say that cross point A is an odd cross
point.

Example 4. Joe is on one "road" (Fig.
4). When he reaches the cross point he will

Figure 4

haves choice of 5 different roads to take.
Since 1+5 =6 and 6 is an even number, we
say that cross point C is an even cross
point.

To focus our attention on various types
of cross points we will introduce a new
rule. When Joe reaches or is in a dotted
portion he may ride over this portion as
many times as he desires.

Example 5. Is point B in Figure 5 an
even or an odd cross point? (Odd) If Joe
starts in the dotted area, can he deliver
papers to all three houses? (Yes) Where
will his problem end? (At cross point B) If
Joe starts delivering papers at cross point

Figure 5

B, will his problem end at this point? (No!
He will end up in the dotted area.)

Example 6. Is point C in Figure 6 an

Figvr1 6

even or an odd cross point? (Even) If Joe
starts in the dotted area, can he deliver all
the papers to all the houses? (Yes) Where
will his problem end? (In the dotted area)

1.$ this answer different from the
sitt.eion with the odd cross point where
Joe started in the dotted area? (When he
didn't start at an odd cross point, he ended
there.)

If Joe starts at cross point C, can he
deliver papers to all the houses? (Yes)
Where will his problem end? (At cross
point C) How is this answer different
from the situation where Joe started at an
odd cross point? (He ended in the dotted
area.)

Let us see what sort of generalizati -ns
we can make about even and odd cross
points.

Pretend that we begin a problem at a
cross point whose number is N.

We will designate the road on which we
leave the cross point as 1; the next road we
come back to the cross point on we will
designate 2, and the next road we leave the
cross point on we will designate 3, etc.

Would we be leaving or coming back on

II 5
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a road designated 17? (Leaving) How do
we know this? (Because 17 is an odd num-
ber, and we leave on the odd-numbered
roads.)

Suppose that N=128. Would we be
leaving or coming back on the road desig-
nated 128? (Coming back) If we start our
problem by leaving from an even cross
point, how will our problem end (Condi-
tion: assuming that we always get back to
this cross point)? Ti t. problem will end at
this cross point, because we won't have a
road to leave on.

If we start a problem at an odd cross
point,, how will the problem end (Condi-
tion: assuming that we always get back to
this cross point)? One cannot tell how the
problem will end, but one can say that the
problem will not end at this cross point
because one will always have a road to
leave on since this is an odd cross point.

We are now in a position to make a
generalization concerning starting a prob-
lem at an end point.

If we start at an cross point,
(even, odd)

our problem will end at this cross point,
providing we can always get back to the
cross point. (even)

If we start at an cross point,
(even, odd)

our problem will never end at this cross
point. (odd)

The question now arises what happens
when we come into even and odd cross
points from some other portion of the net.

With the previous analysis of starting
from a cross point as a background, see if
you can now arrive at the generalization
that one ca .. make with regards to coming
into odd and even cross points from some
other artion of the net. Do not read fur-
ther until you can.

As you have probably discovered, if you
do not start out on odd cross points then
you must end your problem there, because
as soon as you use one road to get to the
cross point, then the problem becomes one
of leaving from an even cross point.

Example: Assume you ride your bicycle
up to a "2N-I-1" cross point. Since you
used 1 road in arriving at the cross point,
you have 2N choices of leaving the cross
point.

Similarly, if you do not start at an even
cross point you do not have to end your
problem there, because as soon as you ar-
rive at the cross point the problem be-
comes a "2N-1" cross point problem, and
leaving from an odd cross point insures
that one will not end there.

Now let us abstract the problem in the
following manner. Let "e" designate an
end point, "0" an odd cross point, and "E"
an even cross point. (Subscripts will de-
note the different members with the same
classification.)

Pretend that we have a single net com-
posed of the following types of specialized
points:

e1 E1 Es Os Eg

What point or points (based on previous
generalizations) would be the most optimal
place to start? (Hint: If we don't start at
one of these points we would certainly end
at one of these points. But if we start at
one of these points we don't have to end
the problem at the same point. Answer:
Either the es or Os, because if we start at
El or Es or E3, we must end the problem at
El or Es or Ea respectively; but we also
have to end the problem at both e1 and 01,
and thus the problem could have no solu-
tion.)

If we start our problem at e1, where
would our problem end? (At 01)

If we start our problem at 01, where
would our problem end? (At es)

Each problem can have only one begin-
ning and one ending. In each of the follow-
ing problems select one of the optimum
beginnings and then proceed to analyze
whether the problem has a solution.

1 E1 el Es Ea es 01 02
2 EL es Es E. ?:
3 Es Es ES E4 Es
4 01 02 03 E1 Es es
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(Problems 1 and 4 do not have solu-
tions. In problem 3 you would end the
problem at the even cross point from which
you started.)

We are now at a point at which the
student can proceed creatively. We will
need to introduce the following notation:
E14 will mean it is a "four" cross point
(that is, four roads come together to make
this cross point), and the 1 will retain its
previous meaning. 047 will mean it is a
"seven" cross point (that is, seven roads
come together to make this cross point).
The "e" will retain its previous designa-
tions as these use only one type of end
point.

Students are now in a position to create
and attack problems, such as:

Given: el E18 E24 E38 013

1 Is this a solvable problem?
2 How many different solutions does this

problem have?

3 How many different bicycles could
traverse this net if each bicycle must
always be on a different portion of the
road at the same time? (Hint: Consider
how at problem must end.)

4 If the problem is not solvable, what is
the greatest number of houses to which
papers could be delivered?

These and many other types of problems
can be attacked through the formation of
generalization via logical analysis.

The placement of activities which repre-
sent terminal learnings in mathematical
textbooks should be examined closely.
Students should always be provided with
sufficient background in a topic so that
they will be in a position to explore and
savor mathematics on their own. Only
after such a goal is reached may we hope to
make mathematics exciting and challeng-
ing for students over an extended period of
time.



An Adventure in TopologyGrade 5
JEAN C. CLANCY

Scarsdale Public Schools, Scarsdale, N. Y.

TO TAKE AN ADVENTURE implies the Un-

known, and that is just what a group
of fifth grade children did recently in mathe-
matics. Before such a trip could be taken,
the consent of all had to be obtained. In this
case the pupils had a desire to learn and the
teacher who acted as the guide, wished to
stir the imaginations of her pupils.

In taking inventory she had to ask herself
some questions. Was the present math pro-
gram adequate for all pupils? Was compu-
tation the most important phase of arith-
metic to be taught? Were the pupils really
motivated to think in mathematical terms?

To answer the first question she would
have to do some experimentation to dis-
cover just how adequate the rogram was,
for the realized that although many pupils
could handle advanced work easily, some-
thing more was needed to broaden their ex-
perience in mathematics.

As for computation, this was a skill worth
developing, but not to the exclusion of
others. If mathematics was completely
manipulation of numbers, the electronic
machines could "take over." A child's arith-
metic skill and such a machine have one
thing in commonboth are in need of re-
pair from time to timebut unlike the ma-
chine, a child can develop the ability to
reason and use logic.

To motivate children to think in mathe-
matical terms is a real challenge, for of all
the science mathematics breeds a motiva-
tion that is different from that required in
other academic areas. The "self-felt" needs
arm': always seen in mathematics, and de-
spite present day concern for greater compe-
tence in math, this science has always been
the most challenging group of ideas to
teach students.

If the necessary skills beyond computing
aren't apparent to all teacherswhatever
levelhow can "needs" be communicated
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to students? To meet the challenge of moti-
vation, she felt an obligation to approach
math in a way that was new to the pupils
and herself; to begin looking for patterns of
thought that have their basis in mathe-
matics; to be able to generalize, work with
theory and then make some applications
that would be appropriate to the classroom
situation.

The ideas took form in the beginning of
the year when the fifth grade class was dis-
cussing length and width and then began to
ask questions about other dimensions, and
the meaning of our three dimensional world.
When paper was represented as 2-D, the
class was asked if they had ever seen one-
sided paper. After the initial laughter and
questions had subsided, they were asked to
think about this and share their thoughts
with classmates the next morning. Their
thinking ranged from: "paper stapled to the
bulletin board so only one side showed,'
to "a picture of a piece of paper because
only one side could be photographed." Cer-
tainly there was thinking, and above all a
genuine curiosity about one-sided paper.

When the teacher cut a long narrow strip
of paper and pasted the ends together, in
the form of a headband, the class told her
that "it has two sides because we can see two
sidesinside and outside." Then she took
another strip of paperlonger than it was
wideand gave the paper a twist before
joining the two ends together (see Figures
1 and 2). She told them this was called the
Mobius Band named for a German mathe-
..:atician who studied it about 100 years ago.
To help them discover why this was one
sided paper, she had them run their fingers
down the middle of the length of the strip,
following the twist carefully. After one trip
around the band, they found that they had
returned to the original point of departure,
without having taken their fingers from the

C)
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A

B

C

D

no. I

no. 2

paper. No edges of paper had been crossed.
When trying the same procedure with the

first named ring (in the form of a headband)
they discovered that there was no way to get
from the inside circle to the outside circle
without crossing an edge. Therefore the con-
clusion was that the Mobius surface was in-
deed an example of one-sided paper whereas
the "ring" was the usual two-sided type.

Interesting to fifth graders? Yes, espe-
cially when discussion led to the three di-
mensional world we live in and applying
what they already knew about dimensions,
to our world.

The motivation for more thinking was in
the new found surface before themthe
Mobius Band. Yet why learn about some-
thing that had no apparent significance to
them in their three dimensional world?
With more thinking and reasoning taking
place, some in the group ventured a "hunch"
that it must have something do with outer
space. This proved to be a good idea for it
was pointed out that in four-dimensional
space, closed surfaces such as Mobius can
cAst. Mathematicians and scientists believe
that it isn't at all impossible that astronomi-
cal space is closed in on itself and twisted
like the Mobius Band. Amazing

Although this would be the closest they
could ever come to a Mobius Band, still it
would be fun to experiment with it to see if
it had any unusual properties. By cutting
lengthwise through the middle, everyone
was prepared to find that the band would

be cut into two pieces. But somehow the
unexpected happened, for instead of having
two pieces, it still had one piece, but
twisted twice instead of once. And worst of
all it was now just an ordinary two-sided
band ! The fifth graders decided that this
magic was all right for demonstration, but
were just as glad that outer space in the
form cr a giant Mobius surface was free from
prying scissors!

When someone recalled that you, the
teacher, had mentioned four-dimensional
space and "what did you mean by that be-
cause here we only have three dimensions?"
it demanded all your resources to explain to
ten year olds that time was the fourth di-
mension.

It didn't seem too mysterious to under-
stand when it was explained that events that
happen around us not only include distance
in space but also the time that they happened
to be completely descriptive.

Now that the measurement of space was
in the thoughts of all, another word could
be added to the growing ten's vocabulary
along with dimension, Mobius, surface,
length, width, height. This word was Topol-
ogy, the branch of geometry which means
the study of locations (without reference to
measurtments of lengths or angles in space).

"If this is a part of geometrythe subject
that my brother is studying in high school
couldn't I learn something about it too, and
have sort of an adventure like we did with
the Mobius Band?"

"Yes, as a matter of fact you could"
and all of us did have an adventure in
geometry that led us to the very nature of
things around us.

Before taking that adventure however, a
final accounting was taken of what we had
learned in mathematics and science as the
IGY period came to its end. Of all the dis-
coveries and experiments undertaken by
scientists in all the world, our own encounter
with the Mobius Surface was the most dra-
matic because it made us think about the
possibilities of unusual properties of space
still waiting to be discovered by thinking
minds.



In the classroom Charlotte W. lunge

Creatamath, orGeometric
ideas inspire young writers

E M M A C. C A R R O L Carroll College, Waukesha, Wisconsin

It happened because of Flat Stanley, Jeff
Brown's delightful, two-dimensional boy,
who became so when a falling bulletin
board flattened him outii My fourth grad-
ers couldn't resist this fellow whose acci-
dent cost him a dimension and gained
him some adventures. Slithering under
doors was fun. Being flown like a kite was
even better! Fun ended, though, when the

Jeff Brown (Tomi lingerer, illus.), Flat Stanley
(Evanston, Harper & Row, 1964).

boy-kite became entangled in the treetop!
Brother Arthur and his bicycle pump ac-
complished the feat of returning Stanley's
lost dimension and making him a creature
of this world once more!

"Can you think about the points, lines,
and planes in your math bookand then
create characters from them as author Jeff
Brown did with Stanley?' an enchanted
class was asked.

Sly looks, chuckles, laughing eyes, and
flying pencils answered my question in less
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than quarter of an hour. Authors shared
characters and adventuresand before the
afternoon disappeared, delightful Stanley
stood in the middle of the fourth-grade
bulletin board in the company of twenty-
four other geometric creations created by
young mathematician authors!

Here are some for you to enjoy. The
characters are a little like Stanley, of
coursebut their predicaments have origi-
nal features and lost dimensions are re-
gained in remarkable ways! Best of all,
most of the chuckling authors deepened
and broadened their concepts of 1D, 2D,
and 3D! Do have fun with the stories
which follow!

The Flat Kid, Jim, by Pat

One day a boy was watching a steam-
roller. The steamroller couldn't stop and
ran over him.

"Hey! Are you all right?" asked the
operator.

"I'm all right!" said Jim.
"You are flat!" said the operator. "It

is scientifically impossible!"
Jim ran home as fast as he could go.

"Mom! Look at me! I'm Flat Jim!"
Jim's mother was a fast thinker. She

said, "Get the gasoline. Drink it, Jim."
"O.K.," said Jim, and he downed the

gasoline.
"Now, get a match!" said his mother.
"Boom!" There was Jim made 3D

again.
Of course, Jim never went near a steam-

roller again!

Linda and the Printing Press, by Ann

Linda was a very curious girl. She was
mostly curious about her father's printing
press. One day, while watching her father
at his press, she got too close and the big
press squashed her. As soon as the press
lifted, she ran away.

An inspector came by and saw that
some of the paper had prints of a girl on
it. He called Linda's father and asked,
"What has happened?"

"That looks like my little girl! She must
be 2D!"

Linda's father ran home and went right
to Linda's room. There he saw Linda as

a two-dimensional girl. Everyone tried to
get her back to normal, but she always
stayed 2D!

A One-D Boy, by Bob

One day, Jim and his brother were
playing with his tape recorder. Suddenly,
Jim got caught and he came out 1D! He
cried and cried but he could find no way
to become 3D again.

It wasn't very good to become a jump

Connie Cross

rope for girls and that is exactly what
happened to Jim! He was pleased when
smite boys rescued hiM and decided to
use him for a kitestring.



"How lucky can a boy-kitestring get?"
said Jim, for as soon as he was high in
the air, he opened his mouth, the wind
sailed in and Jim became 3D again.

Steve and the Laundromat, by Diane

Steve and his mother went to the laun-
dromat. Steve asked, "What would the
world be like if everyone were 1D?"

His mother told him, "I guess the world
would be full of strings." While he was
thinking about this, he sat down on the
washing and soon was hidden in the dirty
clothes.

Steve's mother popped the washing into

the washer and, of course, Steve went right
in with the clothes. He screamed, but his
mother had no idea where the scream was
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coming from. She shouted, "Where are
you, Steve?"

"I am in the washer!" answered Steve.
"I'll get you out!" said his mother. She

pulled and pL led and then saw Steve,
looking like a string. She cried and cried,
took him out, called the doctor and cried
some more.

"No bones are broken!" said the doctor.
"Can he eat? Can he talk?" Steve could,
so the doctor left him as a 1D string with
a crying mother.

A playmate came to visit. He asked for
Steve and could scarcely believe that the
string who answered the door was his
friend. "Yippy!" said the playmate. "We'll
use you as the tail on a kite!"

Outside the two boys went, and up
went Steve. He went higher and higher
as the wind blew the kite into the sky.
Then the friend let go of the string and
no one ever saw or heard of Steve again!

EDITOR'S NOTE.Mrs. Carrol has shown
one way children may relate arithmetic to
other curricular areas, in this case creative
writing and literature. I suspect the children
who wrote these stories not only enjoyed
writing them, but also understood the mean-
ing of one-dimensional, two-dimensional and
three-dimensional figures better because of it!
CHARLOTTE W. JUNGE.



A second example of
informal geometry:
milk cartons*

MARION WALTER
Harvard University, Cambridge, Mas,achusetts

Marion Walter is an assistant professor at the Harvard University
Graduate School of Education. Her concern is the education of
teachers in the mathematics program. She conducts many
in-service workshops and is particularly interested in the
visual aspects of learning mathematics.

This article describes some work that chil-
dren can do with milk cartons. You will
need paper milk cartons and construction
paper. Cut the top off the milk cartons so
that the height is equal to the width. Rule
the construction paper with two-inch
squares.

FIGURE 1

One can start the work in a variety of
ways, depending on the age and interests of
the children and the size of the group. I
and other teachers have worked with
groups as large as thirty-five and as small
as five. The description given here works
well with children in the third grade and
above. Appropriate modifications make
this an exciting unit for students from the
first grade through college.

For a first example see "An example of informal
geometry: Mirror Cards," THE ARITHMETIC TEACHER,
XIII (October 1966), 448-52.
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Before reading on, try some of the work
yourself. Please get a couple of the cut milk
cartons, some construction paper, scissors,
and a friend! Ask the friend to read the
next few questions and directions to you,
because you won't be able to read them if
you really do what I am going to ask you
to do! I am going to start by asking you to
close your eyes!

Visuakinp the box
Close your eyes!

Visualize a box. Keep your eyes closed.
How many sides does your box have?
How big is the box you visualized?
Can you think of a bigger (or smaller) box?
Can you think of a longer (or shorter) box?
Imagine a box all of whose sides are squares.
Take the top off your box (are your eyes still
closed?) so that you have a box without a
top. Just to make sure that you have a good
feeling for an open box, visualize filling it
with sand. Pour the sand out again.
How many sides does your box have now?
Now imagine that a box manufacturer wants
to ship these boxes flattened out. Can you im-
agine how such a box looks flattened out?

Open your eyes!

Draw how a box with five square sides looks
flattened out. What did you draw?
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Before continuing, let me describe ex-
amples of what takes place in a classroom
up to this point. When one child, visualiz-
ing a box, was asked how big his box was,
he replied, "Big enough to put the whole
world in." Another said, "I can hold it in
my h,:nd." Both statements could motivate
a discussion of what the dimensions of such
boxes might have been. Occasionally chil-
dren will give actual dimensions, and when
they do they tend to give only two of the
dimensions. For example, one boy said,
"Mine is 5 by 7," but he didn't name the
unit of measurement. After challenging
him, he said, "It's 5 feet by 7 feet." A dis-
cussion that involved actual measurement
of boxes brought out the need for knowing
three dimensions. The children also realized
that one measurement was sufficient if one
knew ahead of time that the box had all
square sides.

Not all the children were able to recog-
nize squares, and you may need a discuss
"squareness." Many children. who are quite
sure that is a square are not certain
when the pattern is turned.

Many children draw

when asked how their box looks flattened
out. Some have drawn , saying "All the
pieces are on top of each other." Some
have tried to draw perspective drawings
such as

Occasionally, a student has drawn

Drawing of five-square patterns

Do the two patterns pictured below fold into
a box without a top?

--[

Can you think of other patterns made of five
squares, regardless of whether they fold into
boxes or not?
Draw as many as you can find.

What takes place in the classroom? Oc-
casionally, some children have had diffi-
culty finding new five-square patterns. They
can cut out squares from the construction
paper and use them to push around to help
them form new patterns. Sometimes chil-
dren may want to draw and include pat-
terns such as

L
1

or

I then explain casually that for the
moment we will make the rule "whole sides
touching." Sometimes children investigate
later how many patterns there are if the
rule is "corners only touching."

Eventually, the children find all twelve
patterns. The question of whether

and

or

are to be counted as "the same" or as "dif-
ferent" is raised by the children. They
usually decide to consider two patterns to
be "the same" if each of the patterns can
be covered by the same paper cut-out.

Folding and unfolding
Which of the twelve patterns fold into boxes
without tops?
Can you predict just by looking at each pattern
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LI

FIGURE 2

in Figure 2 which are "box-makers"? Try!
Check by cutting out all the patterns and fold-
ing the paper.
Can you predict which squ,,re(s) form the
bottom?

(A)

(D)

(B) (C)

(E) (F)

(G) (n)

FIG. 3.The Box-makers

The children often disagree with one
another when they predict which patterns
are "box-makers" or which square forms
the bottom. They can always settle their
arguments by themselves by using the
paper patterns.

Now draw all the "box-makers" and label
them. See Figure 3, for example.
Choose one of the patterns [don't choose Al]
and write its number on the bottom of a cut
milk carton. Try to cut the milk carton to ob-
tain this pattern!

Children much enjoy this activity and
like to choose several of the patterns hi
succession. They are often surprised when
they obtain one of the patterns but not the
one they bargained for! Sometimes the
cartons fall into two pieces.

Extension of the work

This work can be extended in many
directions.1 Many questions have been sug-
gested by students themselves. Children
have worked with four or six squares. They
have explored enuilateral triangles and
solids made from them. Some investigated
rectangles. The children have often tried
to cut patterns with minimum wastage of
construction paper.

Conclusion

This article describes only a small part
of the work that can be done with patterns
of squares. I chose to isolate this milk
carton section because it can be done by
itself without the rest of the unit and be-
cause milk cartons are being thrown away
every day!

The children often do not realize that
they are doing anything mathematical while
working with these materials. What do you
think?

1"Polyominoes, Milk Cartons and Groups." A
brief description of the extended work written fer
high school teachers appears in the English journal
Mathematics Teaching, No. 43 (Summer 1968),
pp. 12-19.

r r-
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Volume of a Cone in X-Ray
Manipulative materials: A cone made of

cellulose or some
transparent material
that will retain its
shape, a cylinder
made of the same ma-
terial having, of
course, the same
height and circumference and sawdust to be
uscd to fill the figures.

Having learned how to find the volume of
a cylinder, pupils can through the following
performance proceed to an understanding
of how to find the volume of a cone. Let the
pupils fill the cone to the brim with sawdust
and then pour it into the cylinder. Upon
measuring they'll lend accuracy to their ob-
servation that only a of the cylinder is filled,
and through further experience pupils will
see that the cylinder holds three times as
much as the cone. Incidentally, it will help
considerally toward clarification if the pu-
pils mark each third of the cylinder with
a color. Through questioning as well as ac-
tual performance, pupils will arrive at the
conclusion that since the cone is a the size
of the cylinder, it will logically follow that
the volume of a cone will be a the volume of
a cylinder, and hence the formuln:V

The advantage to be found i.t the use of
these manipulative materials is the direct
experience the pupils have in seeing as well
as participating in actual solution of their
problem.

Contributed by
Sister M. Vincent
Cleveland, Ohio
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Geoboard geometry for
preschool children

W. LIEDTKE and T. E. KIEREN
University of Alberta, Edmonton, Alberta, Canada

Thomas E. Kieren is an assistant professor of

education (mathematics education) at The Pennsylvania State University,

and Werner Liedtke is a Laduate student in elementary

mathematics education at the University of Alberta.

There is increasing emphasis today on
preschool experiences in mathematics for
children to capitalize on their eagerness
to explore and interpret the world around
them. This paper explores a wide variety
of experiences based upon the use of a
geoboard and rubber bands. The geoboard
provides many opportunities to acquaint
children with geometric concepts. Learning
from their own play and from imitation
of adults and other children, it is not long
before they can recognize, correctly label,
and form for themselves many common
geometrical figures and instances of geo-
metric properties, as well as such common
sha?es as letters of the alphabet. The illus-
trations that follow were drawn from the
authors' observations of children aged 2-6
as they worked individually and in groups
with the geoboard. Questions asked and
possible suggestions given are classified un-
der three main headings: Familiar Shapes;
Plane Figures; and Segments.

Free activity

An excellent way to begin is by provid-
ing each youngster with a geoboard and
a gubber band and letting him do whatever
he wishes. While he works, he could be
motivated to show and talk about what
he has made. Recent experiences and ob-
jects from his immediate environment will
be represented by various ingenious con-

structions and configurations. Sum' sample
responses from a "free activity" period are
presented on the following page (Our geo-
boards were 5 by 5 inches, and the pegs
were about 1 inch apart.) The comments
recorded represent the first responses of the
children. Often, slight modification or even
rotation of the geoboard led to the assign-
ing of different names to very similar
figures.

One sequence may begin by giving the
children one rubber band, later increasing
the number to two or even three, and
challenging them to make something that
was not possible before.
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One rubber band:

'

2 years
Boat

21- years
Sandbox

21- years
Tent

. . .

K07

41- years
House
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5 years
Bed

4i- years
Road

Two rubber bands:

2 years
Star

/ I/
44- years

Train track and street

2-12- years

Garden and sandbox

44 years
Steps

5years
Ice-cream cone

Three rubber bands:

2 years
Corrals

. .\\/

. .
4 years 5 years

Star Bird witli wings

5years
"Fridge')

4-1- years

Sailboat

Familiar shapes:

SUGGESTIONS

On your geoboard, show how to make some
shapes that look like something in this room.

. .
Try to make something that can be found in

the kitchen.
Try to make something that can be found in

the
basement;
yard;
grocery store;
playground;
garage.
Show something your dad uses.
Show something that is alive.

5 years
Canada flag

4-1- years

Swimming pool

POSSIBLE QUESTIONS (INSTRUCTIONS)

Can you tell your friend what you have made?
(Show him and explain.)

Look at something someone else has made and
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try to guess what it (Ask for a hint where it
can be found.)

Does your figure look the same if you turn
the geoboard around?

How many sides does your figure have?
How many corners does your figure have?

(Are there more corners or more sides?)

Sample responses:

22 years
TV

43- years

House and garden

Plane Figures:

22 years
sue,'

4-1. years

Hammer

SUGGESTIONS

Try to make figures with three sides that are
small;
large;
"skinny";
"fat."
Try to make figures with four sides that are:
long;
short;
long and wide;
long and narrow;
short and wide;
short and narrow;
"like a square";
"not like a square."
Try to make figures with "many sides."

POSSIBLE QUESTIONS (INSTRUCTIONS

What does the figure you have made remind
you of? Does it look like anything that is familiar
to you? (Where did you see something like it
before?)

Does the figure change if you turn your geo-
board?

Make two figures that: (1) do not touch; (2)
touch; (3) cut into each other. Look at the
figures you have made.

Can you make another one that looks just
like itbut smaller, (o bigger)?

Make a triangle and a square. How are they
alike? How are they different?

Sample responses:

/

years
(Make another
triangle like it.
but bigger )

5 years
(Two figures that
are different )

6 years 5 years
(Two figures that (Figure with many

are alike) sides)

Segments:

SUGGESTIONS

Try, to make segments that are
short;
long;
straight;
"crooked."
Try to make segments that
do not to4ch;
touch;
cross each other (intersect);
will "never" touch (parallel);
are exactly on top of each other.
Try to make various segments
leading to two (or more) points;
various numbers of segments, i.e., two that are
equal;
two that are not equal;
many different segments.

POSSIBLE QUESTIONS (INSTRUCTIONS)

How would you make a road?
Can you make a very narrow r ;ad?
Can you make one that is long and narrow?
Make a railroad track. (If possible provide

rubber bands of different colors.)
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Can you make a road and a train track that
cross? . . . do not cross? . . . will never moss?

Look at two pegs in different corners. How
many different roadscrooked or straight; few
or many cornerscan you build between these
two pegs?

Which road would you like to travel on? Why?

Sample responses:

2-1-yeurs
(Road)

4 years
(Long and short road,

not crossing)

5 years
(Many roads

between two towns)

Summary and additional suggestions

The previously outlined activities present
one possible way to begin a session with
a geoboard. Since the children work with
creations on their own that differ in many
respects, the activities are open-ended. It
will soon become evident that any session
will be a combination of what has been
suggested. Depending on the age and back-
ground of the children, they will interpret
instrucions and questions in various ways.
They will give unique replies that often lead
to some idea that was not intended at the
outset. While working, some children will
recognize configurations that suddenly re-
mind them of something familiar. For ex-
ample, while talking about roads and train
tracks (segments), one girl looked at her
constructed figure and remarked, "A 'T' on
a liner The question was raised, "Does it
look like a 'T' if you turn your geoboard
around?" "No, now it's an 'H'." The ques-
tion "Can you make other letters on your

44- years

geoboard?" resulted in having two children
male the following:

f, 4.
The last response led to an attempt to build
more numerals. Thus the topic of segments
led to letters, numerals, and sets, and it
could have also been used to discover
something about angles (i.e., right angles).

.

2 years
( Big squarelittle

square)

Similarly, the
figures can lead

2 years
(The square that

grew rind grew)

topic of "big and little"
to the discovery of some

of the properties for similar figures (corre-
sponding sides and vertices). Having chil-
dren attempt to copy a figure can lead
to discovery of some properties of con-
gruence. Some children will exhibit an
awareness of symmetry (e.g., "birds with
wings"). Most of them will easily pick
up such terms as triangle, square, and
rectangle and use these terms correctly.
Some will talk of polygons and angles, and
a few might even be led to discover such
polygons as parallelograms, quadrilaterals,
or trapezoids.

In allowing for these developments it
should be remembered that these children
develop ideas through both imitation and
free play. By imitating an adult or another
child, the child may get an idea he never
had- before. But free play allows him to
expand on the ideas and capabilities that
he already possesses.



Pegboard geometry

LEWIS B. SMITH University of Wisconsin;
ifr. Smith is a graduate student at the University of Wisconsin, where he is
majoring in elementary school mathematics. He has taught and served
as an administrator at the elementary school level.

Geometry has now won for itself a place
in the elementary school mathematics cur-
riculum. Although emphasis varies from
publisher to publisher, there is no question
that geometry is included in each major
series. The Cambridge Report urges a
more distinguished place for it in the cur-
riculum of the future.

Geometry finds its place because of the
contribution it makes to children's think-
ing. Children are led to reason, to examine
geometric forms carefully, and to develop
with a minimum of formal definition a skill
in seeing and speaking about conditions in
various parts of a geometric construction.
Clarity of thought, exactness of expression
and a greater feeling of self-dependency,
trust in one's own ability to perceive, to
examine, to hypothesize, and to proveall
assure geometry of its place in today's and
tomorrow's mathematics curriculum for
the elementary school.

Professional mathematicians who sug-
gest geometry topics for the elementary
school call for giving children the oppor-
tunity to use mathematical descriptions of
external reality; to sense that geometric
topics are intrinsically worthy of interest
and respect; to interpret and compose
satisfactory models involving spatial ideas;
to be afforded a source of visualization for
arithmetical and algebraic ideas; to dis-
cover the meaning of symmetry, equality,
inequality, congruence, and similarity;
and to test the appropriateness, truth, and
pertinence of idormation.1

Goal* for School Mathernages, the report of the Cambridge
Conference on School Mathematics (Boston: Houghton
Mifflin Company, Ogg).
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The experiences reported here are fully
in keeping with the spirit and vision of
these proposals. Intermediate grade chil-
dren responded to the following activities
with enthusiasm, understanding, and in-
terest.

Children were given 10' X 10' peg-
boards. They were asked to form a rec-
tangle 2 "X3" with four pegs and enclose
the pegs with rubber band. Then they
were asked to double the width of the
figure. The children set 2 new pegs and in-
creased the stretch of the band to encom-
pass the new figure. They were asked how
the perimeter and area were affected by
the change (see Fig. la). The children were
asked to return the band to the original
four pegs and double the length by placing
two new pegs and stretching the band to
enclose the new figure. Again, they were
asked what effect this had on both the
area and perimeter (Fig. lb). Finally, the
children were asked to double both the
length and width of the original figure. In
response to this request instances like that
shown in Figure lc appeared, and these
offered opportunity for discussion. When
Figure Id was agreed upon, questions of
perimeter and area were again raised.

I

a

Figure 1

The expanded rectangle in Figure ld
was used to extend experiences. Children
were asked to show ways of dividing the

Vj if

b



figure into two equal-sized areas. Early
replies were confined to halving by band-
ing off equal, rectangular areas (Fig. 2).
Illustrations here are limited to one phase,
although in practice the children also
noted the opposite or congruent phase.
Equal areas with varyin perimeters were
noted.

Figure 2

Other replies were forthcoming in re-
sponse to the idea that they halve the
original area, and much thought and dis-
cussion were generated over the equiva-
lence of areas described. Figures 3a and 3b
were quickly agreed to, but 3c and 3d were
judged correct only after construction and
study of the complements.

a

Figure 3

b d

Opportunity arose for discussion of the
area of the triangles, their various shapes,
and similarities of their areas. Children
were able to devise a fornwla for a tri-
angle's area, based on the known dimen-
sions of the rectangular figure. Experi-
ences later in the lesson permitted them to
verify its accuracy in many different situa-
tions.

When the children understood triangu-
lar regions, many smaller triangles ap-
peared on their boards, although the
descriptions always represented half the
marked-off area (Fig. 4).

Figure 4

Pegboard Geometry / Smith 57

Then came the more intricate figures
composed by the fifth graders (Fig. 5).
They occasionally composed the shaded
areas by assembling smaller triangles with
several bands. Other children stretched a
single band to encompass the largest area
the band could enclose.

C44

Finally, patterns developed which
caused so much discussion and puzzlement
that manila graph paper was used to help
verify the similarity of areas (Fig. 6).
Cutting the line-graph area proved helpful
in soh. a ;nstances.

Additional sophistication in communi-
cating about diagrams can be encouraged
by labeling the pegs with letter names and
having the children describe their patterns
in terms of the letter names. Children
gained accuracy in the description of areas
enclosed by the rubber bands by naming
the pegs. Figure 7 was described as four
triangles, AAEF, ABM, ABCF, and
Anil, by children who had used four
rubber bands. However, other children
preferred to name the area as a quadri-
lateral AEGF plus ABCF and AFHI.

Figure 7

Another experience involved the use of
four pegs. The children were asked to
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form as many triangles as they could by
using three of the pegs.

Figure 8

We then moved peg P, as in Figure 8, to
location P' in Figure 9 and tried again.

Figure 9

Children were then asked if they could
place the band on the pegs in such a way
that they could make four-c;ded figures
(quadrilaterals). They discovered these
figures.

(Using Figure 8 model)

(Using Figure 9)

Figure 10

On a succeeding day the fifth graders
examined the triangle with a base of 2 and
a height of 8 peghole intervals (inches).
They quickly found triangles of equal area
like the ones in Figure 11.

Figure 11

Questions arose when we considered
triangles such as those depicted in Figures
12 and 13. These triangles offered further
possibilities for discovery on the part of
the children.

Figure 12

Figure 13

In Figure 12 children easily found the
area L.ABC and AA /J based on the
experiences described earlier. Since peg-
hole gaps are one inch each, the remaining
triangular areas were computed by finding
the area of adjacent triangles and sub-
tracting this from the enlarged triangle.
For example:

Area /ACD
=area /.A BD minus area L,ABC

Area AACD

=(1.8.4) minus (x.8-2)



Amp. AA CD

=8 square inches.

Similar treatment in Figure 13 yielded
accurate results. The area of AABH

area A AZII minus area ABZH.
(Twenty square inches minus 12 square
innhcs ,-,crant. S square inches.)

We then explored with children what
happens Ivlien the AABH is extended
indefinitely to points I, J, and beyond.
Several children were particularly fasci-
nated with this discovery.

Another opportunity for analysis lies in
the examination of relationships of AB to
AZ and AABH to AAZH as in

AABII AB
AAZH AZ'

and with substitution

/A/111 2

20 5

5. AABH=40 AABH=8.

With, and sometimes without, en-
couragement children will ask about the
equality of areas in /ABC and ADEF in
Figure 14.

Figure 14
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Figure 15

By this time the children's inquiry led
to Figure 15 (enlarged part of Figure 14)
and analysis of equality of area for nu-
merous triangles such as AXIT and,
AX Y117 and AX Yr, and so forth.

Experiences described in Figures 11

through 15 served to extend children's in-
sight. The formula for a triangle's area
would have sufficed to solve problems
raised in these situations. However, the
author feels that many discoveries and
'earnings await the child whose interpreta-
tions are not limited too early by the
formula.

Developing a sense of trust in one's own
ability to perceive and an increased aware-
ness of the varied choices or responses
available to the thinking person are a few
of the rewards awaiting the elementary
school student of geometry. The methods
reported here amply provide these kinds
of experiences. They also develop the
pupils' ability to interpret physical situa-
tions through the construction of simple
models. The pegboard is a successful me-
dium for portraying geometric idea::: and
for promoting exploration. Through its
use boys and girls can be guided to dis-
cover truths that reveal significant arith-
metical and geometric understandings.



Tinkertoy geometry

PAULINE L. RICHARDS
Bethesda Elementary School, Bethesda, Maryland

Mrs. Richards' article grew out of a presentation that
she made in a course at the University of Maryland. She is a
classroom teacher.

Finding suitable instructional aids for
my fifth-grade geometry class was a prob-
lem until I discovered the versatility of
Tinkertoys.

The round "joints," or disks, though
large, may be used as a representation
of a point (Fig. 1).

FIGURE 1

A model of a line segment can be
formed by joining short sticks and more
disks (points), as shown in Figure 2.

0-0-0-0-0
FIGURE 2

The two end points and some of the
points between are clearly represented, so
the property of "betweenness" can be
pointed out by using this model.

If a cardboard arrow is attached, one
end point is eliminated and a ray is shown
(Fig. 3A). If an arrow is used to repre-

FIGURE 3A

sent an extension in the opposite direction,
a line is illustrated (Fig. 3B).
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FIGURE 3s

These representations can be easily
manipulated. Geometric figures can be
shown as being a part of different planes
rather than as being just on the surface
of a chalkboard or a textbook page.

One of the balls that are now included
in the kits can be used to illustrate a
point through which many lines pass (Fig.
4).

4.Lines pass through the point in an
endless number of directions.

Intersecting lines can also be shown,
and the angles can be observed (Fig. 5).

FIGURE 5



Angles can be compared by matching one
representation with another and asking,
"Are they congruent?" and, "Is the meas-
ure of one greater than the measure of the
other?"

As the study of angles is continued,
two rays with a common end point can
be shown in a variety of ways. Names
can then be given to the different classes
of angles observed, as shown in Figure 6.

OBTUSE

FIGURE 6

ACUTE

By the use of three intersecting line
segments, triangles can be introduced. I
encourage the students to make Tinkertoy
triangles, to include angles of different
sizes, and to note the effect on the length
of the sides of the triangles. The students
soon want to know how to name triangles,
and they quickly begin discussing scalene,
isosceles, and equilateral triangles.

The study of polygons continues with
much interest. By making representations
of polygons and using only four sticks
but a variety of lengths, students readily
see that quadrilaterals are not limited in
shape to the familiar squares and rec-
tangles. We are off again, naming quadri--
laterals! (Actually, I had not planned to
go into the naming of polygons so com-
pletely with my fifth-grade class, but I
found myself carried along by their in-
quisitiveness.)

Illustrating a figure as the union of
disjoint sets of points becomes a natural!

Tinkertoy Geometry / Richards 61

The representation of a line can be
separated into the three sets of points
illustrated in Figure 7.

<-0-0- 0 --0-0-1>
HALF-L1NE POINT HALFUNE

FIGURE 7

A plane may he separated into three
disjoint sets of points. For instance, by
using a model of a rectangle in a plane,
it is possible to separate the plane into
three disjoint sets of points, as indicated
in Figure 8.

//,/,// /

FIG. 8.(1) indicates the points in the in-
terior of the rectangle; (2), the points of the
rectangle; and (3), the points in the exterior of
the rectangle.

By passing an object through the in-
terior of the rectangle, a distinction can
be made between a rectangle and a rec-
tangular region.

Geometric figures constructed from Tink-
ertoys are light enough to be used for a
bulletin-board display. A small roll of
masking tape on the back of each disk,
and a pin through the hole, will hold any
figure secure.

I am still discovering uses for my
'Tinkertoysconcave and convex figures
and diagonals of polygons are but a few
possibilities. Perhaps you can continue
to discover, too!



Congruence and measurement
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Dr. Jackson is a priVessor of mathematics
at the University of Maryland.

The elementary ideas in mathen.atics are
abstractions drawn from the experiences
an individual has with his physical en-
vironment. These experiences are primarily
of two kinds. T',ere are, first, those ex-
periences that are associated with count-
ing. They arise naturally in dealing with
collections of discrete objects and lead
ultimately to the abstract notion of the
counting numbers and the operations on
the counting numbers. That is, the ex-
periences of this type are those that induce
us to invent the counting numbers and
the usual arithmetic of this system and
its extensions. The second category of
experiences includes those of a spatial
nature. They are related to our perceptions
of size, shape, and form. The child dis-
covers that this pencil is too long to fit
in that box; that this peg will just fit in
that hole; that the faces of two of his
blocks fit exactly on earn other, and so
on. These are the experiences that moti-
vate us to identify and discuss various
figures and to give names to the common
ones like line s,r;ment, line, ray, plane,
triangle, circle, and sphere. Thus the de-
veloping space perception of the individual
leads to the creation of the mathematical
ideas normally associated with the word
"geometry."

Both these strains of mathematical think-
ing occur in the elementary school mathe-
matics curriculum, with the larger por-
tion of time devoted to the arithmetic
work for which it is nece.-ary to develop
not only the concepts but also the appro-
priate manipulative skills. The geometric
phases of the curriculum are in large part
related to the idea of measurement. This
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is wholly appropriate, but not infrequently
the emphasis is placed so much on com-
putational skills that the essential geo-
meWc ideas involved are not fully per-
ceived. It is the purpose here to explore
briefly the geometric ideas that underlie
the measurement process.

It should be noted at the outset that
the subject of geometry as it occurs in
the elementary school is quite different
from the corresponding subject in high
school. In the high school development
the emphasis is quite strongly on the de-
ductive method, ,.vith discussion of axioms,
theorems, how to give a proof, and the like.
At the elementary school level, while the
ability to reason is to be encouraged in
all possible ways, geometry is much more
a development of perception, an exploring
of spatial relationships. It might perhaps
be described as physical geometry, and
is the intuitive basis against 'which the
later, more formal work can make sense.
There will be much room for intuition
and discovery. A word of caution may be
in order on this point, however. Care should
be taken to avoid giving the pupil the
impression that a few physical observations
constitute a proof. They may form the
basis of a hunch or a conjecture, but to
pass this off as a proof is to precipitate
great confusion later when proofs are to
be discussed.

The idea of congruence

In the sense of developing spatial per-
ceptions, it is clear that geometry begins
well below the school level. The child
will begin early to distinguish between
such things as a round object and a square
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or triangular one. An imaginative first-
grade teacher of my acquaintance makes
a deliberate effort to reinforce this dis-
crimination by placing a number of objects
of different shapes in a bag. She then has
a pupil put his hand in the bag and de-
scribe, on the basis of feeling alone, the
characteristics of one of the objects. An-
other activity in which children frequently
engage is the assembling of puzzles. In-
deed, the assembling of jigsaw puzzles as a
recreational activity is by no means con-
fined to children. The individual, of what-
ever age, who correctly selects the piece
to fit into a given space in a puzzle is
exercising his perception of an extremely
important geometric relation called con-
gruence. That is, he is observing that a
particular piece of puzzle exactly fits in
a particular hole. The author knew one
student whose perception of shape was so
keen that he preferred to assemble a jig-
saw puzzle with the pieces turned wrong
side up so that he was not 'distracted"
by the picture.

In general we speak of two figures as
being congruent if one will fit exactly
on the other, or, more precisely, if a
model of one will exactly fit on the other.
This concept of congruence proves to be
a critical one for the understanding of
measurement. Once the idea has been
identified, it can be noted again and again,
both in common, everyday contexts and
in guided experiences designed for the
purpose. For example, two sheets of paper
from the same ream provide an excellent
representation of congruent rectangular
regions, and two soda straws are a rea-
sonably good representation of congruent
line segments. Even in situations where
congruence does not appear explicitly, it
is often in the background. If we try to
compare two pencils by laying them side
by side on a desk with their erasers to-
gether, it may happen, as in Figure 1,
that the tips do not match. That is, the

t. LIU

FIGURE

pencils cannot be considered as represent-
ing congruent segments. However, the very
process of laying them side by side sug-
gests that one of them is congruent to
a portion of the other. Thus the process of
observing that two segments are not con-
gruent amounts to identifying one of them
as congruent to a part of the other.

Experiences with congruence

An observation concerning congruence
of angles may be obtained by using an ordi-
nary sheet of paper. If one tears off two
corners from the sheet of paper, the torn
pieces will almost certainly not he con-
gruent, yet by placing one on the other
it appears (Fig. 2) that they can be so
placed as to "fit" near the vertices, This

FIGURE 2

B

leads in a natural way to the concept of
angles' being congruent even when the
regions with which they are associated are
not. In particular, the four angles asso-
ciated with the corners of an ordinary
sheet of paper appear to be congruent.
Moreover, if the four corners are torn
off, it is discovered that these four pieces
appear to just fit together at a point, as
indicated in Figure 3. This property is

FIC.URE 3

characteristic of what is called a right
angle. That is, an angle is a right angle
if four congruent copies of the angle
and its interior will just fit together to
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cover the space about a point in a plane.
This leads to the possibility of making a
very satisfactory model of a right angle
by paper folding as follows. Let a sheet
of paper (which is not assumed to have
any particular regular shape) be folded,
creasing firmly. The crease will be an
excellent representation of a line segment,
as indicated in Figure 4.

crease
FIGURE 4

A second fold is then made so that the
first crease falls on itself (as shown in
Figure 5), and is again creased firmly.

crease
FIGURE S

The two creases form a good representa-
tion of a right angle. This becomes clear if
the paper is unfolded again. The creases
are then seen (Fig. 6) to form four angles

FIGURE 6

that fit together at a point and yet are
congruent, since they lie on each other
when the paper is folded.

A second property of congruence which
lends itself to phr'zal verification con-
cerns isosceles triangln, that is, triangles
which have some pair of sides congruent.
Consider the isosceles triangle ABC shown
in Figure 7. We suppose that segments
AB and BC are congruent. Imagine that
such a triangular region is cut from paper.
If the paper is folded so that vertex A
falls on vertex C and if the paper is
creased, the situation is as shown in Figure
8. That is, the angle with vertex A is
congruent to (will just fit on) the angle

B B

FIGURE 7

A,C
FIGURE 8

with vertex C. This is an experimental
discovery of a basic property of isosceles
triangles which, at a later stage, the stu-
dent will see as a theorem in geometry.
The theoreri could be stated in some such
form as the following:

If two sides of a triangle are congruent,
the ar,les whose vertices are opposite
these sides are also congruent.

Numerous other situations involving the
concept of congruence could be developed,
but one more will suffice here. Imagine
narrow strips of paper which can be con-
nected at their ends by fasteners. The
strips are crude representations of line
segments. If three of these are fastened
together, as shown in Figure 9, they form
a model of a triangle.

FIGURE 9
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Now suppose that several persons are each
given three such strips so that each two
people have strips that are congruent
(just alike), and suppose that each person
proceeds to form a triangle as above. It
will then be found that all the resulting
triangles appear congruent to each other.
That is, in a certain sense there is only
one way of forming a triangle whose sides
are congruent to three given segments.
This is the physical indication for the

theorem that if three sides of one tri-
angle are congruent to the three sides of
a second, then the triangles must be con-
gruent.

The experiment above can be made
even more striking by considering the cor-
responding situation with four strips, which
can be assembled to form a quadrilateral.
Here experimentation readily shows that
it is not true that congruence of the sides

will insure congruence of the quadrilaterals.
An illustration of this is shown in Figure

10.

FIGURE 10

The difference between the cases of the
triangle and quadrilateral is particularly
impressive if the experiment is done with
strips of wood or metal rather than paper.
The feeling of rigidity for the triangle is
in sharp contrast to the easy distortion
of the quadrilateral. Pupils often find it

interesting to look around for examples
where the rigidity of the triangle is used
in building as, for instance, a brace for
a shelf or a diagonal reinforcement for a
gate in a picket fence.

Linear measurement

So far our discussion has concerned
itself only with the intuitive meaning of
congruence. What relation does this have
to measurement? What, indeed, do we
mean by "measuring" something, say a
line segment? The idea is to make use of
numbers to describe in some sense "how

much" line segment is present. The whole
numbers (i.e., the counting numbers to-
gether with the number zero), as we have
noticed, grow out of our experiences in
counting and at first sight seem wholly
inappropriate for working with an entity
snch as the line segment shown in Figure

FIGURE 11

11. What is there here to count? One is
reminded of the frustrated golfer who
bitterly described golf as a game in which
the object is "to propel a little round ball
from one place to another with instru-
ments singularly ill adapted for the pur-
pose." There is a sense in which the whole
numbers are "singularly ill adapted" for
the purposes of measurement. However, the
techniques by which numbers are attached
to geometric objects are among the most
far-reaching ideas in all elementary mathe-
matics. We meet here, so to speak, the
wedding of arithmetic and geometry.

As has just been noted, when one looks
at a segment, he sees nothing to count and
hence at first sees no way of describing it
by a number. In a sense his first task is
to create something to count. This is done,
as the reader is well aware, by selecting
some convenient segment as a unit. Thus,
in Figure 12, to measure segment AB,
using segment PQ as a unit. one asks how
many congruent copies of PQ are required

to cover segment AB. Using segment PQ
as a unit, it appears that AB is 8 units long.

A g
P-Q

FIGURE 12

Seen in this perspective, it becomes
clear that congruence of segments is at
the very heart of measurement of seg-
ments. Congruence is the concept that has
been used in obtaining the objects we count.
To measure a segment, then, is to count
the number of (nonovcrlapping) congruent
copies of the unit segment necessary for
covering. Two segments on a line are called

(
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nonoverlapping if they have no interior
points in common, i.e., if they either have
no points in common or have a common
end point. As we shall note briefly below,
the same essential idea of measurement ap-
plies also to angles and to plane and solid
regions.

While it would take too much space to
discuss in detail all the consequences of this
idea of linear measurement, it is possible
to mention some of the ideas that grow
out of it. First of all, any experience with
linear measure makes clear that the process
is inherently approximate. Most of the time,
when one seeks to cover one segment with
congruent copies of a second, it does not
"come out even." For example, in Figure
13 the length of segment CD using XY
as a unit is more than 3 but less than 4
units. Thus in terms of a given unit it is
clearly not always possible to cover exactly
with any whole number of units, and this
would still be true even if we could lay
off the congruent copies of XY without
any manipulative inaccuracies. The con-
cept of the approximate nature of measure-
ment is an important one.

C D

X Y

FIGURE 13

A second by-product of the idea of meas-
urement of segments arises by observing
that, in laying off successive copies of the
unit segment, it might be worthwhile to
mark the end point of each copy to indi-
cate how many times the unit segment has
been used. Thus, in Figure 14, point B
is marked with a 5 to indicate it is the

A

2 3 4 5 6

FIGURE 14

7 8

end of the fifth congruent copy starting
at A. If we imagine the process to continue
indefinitely, we have precisely the familiar
number line. Presumably we would wish to
associate the starting point A with the
number zero. A movable copy of a part of
such a number line is nothing but the

familiar ruler. It is to be noted that the
unit may be any segment whatever. There
is no requirement in any of the discussion
that a standard unit be used. The only
reason for using a standard unit would be
to facilitate communication with other peo-
ple.

In considering the approximate nature
of measurement, it inevitably occurs to
one to abandon the requirement that the
measure be a whole number and allow
fractions. For example, segment CD in
Figure 13 may appear to have a length of

31 /s
10units or units. This is certainly a
3

legitimate idea and leads at once to the
concept of the number line with numerical
labels for points at various fractional parts
of units. A little reflection reveals, however,
that the situation is not basically changed.

To say that CD has a length of 13 units

means simply that we have considered the
original unit segment divided into three
congruent parts. The statement then says
that it takes 10 congruent copies of this
smaller segment to cover CD. Thus the
use of fractional measures, while frequent-
ly useful and desirable, really amounts to
nothing more than selecting a new and
smaller unit in which to measure.

Angle measurennit
The essential idea of the measure of a

segment as the number of congruent non-
overlapping copies of a unit necessary for
covering extends readily to angles. Consider
the angle AOB in Figure 15, and let angle
RS7' be selected as a unit angle. Then

FIGURE 15

by the measure of angle AOB with respect
to this unit we mean the number of non-
overlapping congruent copies of angle RST

(
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and its interior that are necessary to cover
angle AOB and :is interior. The word
"nonoverlapping" means that successive
copies have a ray in common, but that
their interiors have no common points.
Showing the successive congruent copies
by the dotted rays in Figure 16, it appears
that angle AOB is between 2 and 3 units.

18 /

0
it

FIGURE 16

That is, it is larger than an angle whose
measure is 2 and smaller than an angle
whose measure is 3.

Just as the operation of measurement of
segments leads to the invention of the
ruler as a measuring device, so the opera-
tion of measuring angles leads to the in-
vention of the protractor as indicated in
Figure 17. Here angle LMN has a measure

unit angle

FIGURE 17

of 3 units. In this particular example, the
unit angle is such that eight congruent
copies of the unit angle and its interior
just cover a line and one of the half planes
determined by it. A more common unit of
measure for angles, the degree, is such
that it takes 180 congruent copies to cover
the same set of points.

Area measure
Let us turn now to the question of meas-

ure for a region in a plane. By the word

"region" is meant a simple closed curve in
a plane and its interior. The essential idea
is the same as before. We select some con-
venient region to serve as a unit and ask
how many nonoverlapping congruent copies
of this unit region are necessary to cover
the given region. In this case, however,
we find ourselves confronted with a be-
wildering variety of possible shapes of re-
gions and possible choices of unit. Three
possible examples are shown in Figure 18.

UNIT REGION REGION TO BE
MEASURED

FIGURE 18

MEASURE OF
REGION

12 units

4 units

12 units

In view of what is to be done with the
unit region, it is clearly desirable to select
a unit region like those above such that
congruent copies can be fitted together to
provide a paving of the plane. That is, we
want to cover as large a part of the plane
as we wish with congruent copies of the
unit region that do not overlap but that
de not leave spaces uncovered. (Circular
regions, for example, will not fulfill this
purpose.)

The most common choice for a unit re-
gion is, of course, a square region each
side of which is one linear unit in length;
but this should not obscure the theoretical
possibility of other choices and some of the
interesting geometric ideas connected with
paving the plane with differently shaped
regions.

The measurement of a region, in the

1-'4 (-1
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sense just described, is called the area of
the region. There are both similarities and
differences between the measurements of
area and of length. A notable similarity is
the fact that measurement is still approxi-
mate. Indeed this is a characteristic of all
measurement. In the examples of Figure
18, the regions to be measured were chosen
so that they could be exactly covered by
some integral number of congruent copies
of the unit region. This, however, is clearly
the exception; and in any case the process
of fitting the congruent copies always in-
volves manipulative error. Usually an at-
tempt at covering some region with con-
gruent copies of the unit region will show
some copies inside the given region and
some partly inside and partly outside. For
example, using a square region as a unit,
the rectangular region in Figure 19 is seen
to have an area between 8 and 15 units.iiiri

I

___
I I

FIGURE 19

As in the case of linear measure, one
may introduce measures which are frac-
tions but not whole numbers. As before,
this is really a matter of choosing new unit
regions that are fractional parts of the
original unit region. Whatever the unit
used, however, most of the time the regions
to be measured are not exactly covered by
a whole number of congruent copies of the
unit region. Combining this with the fact
noted above that in practice one cannot
construct exactly congruent copies anyway,
it is clear that though in theory we may
conceive a region to have an exact measure,
in practice the answers we get are always
approximate.

Possibly the most striking difference be-
tween the measurements of length and of
area is the lack of an instrument for meas-
uring area that corresponds to the ruler
for length. Let us examine the ruler for a

moment. To measure the length of a seg-
ment AB one may place the zero point
of the ruler at one end, say A, of the seg-
ment and see where on the ruler the other
end B of the segment falls. If, as in Figure
20, B falls at the point marked 5, this
indicates at once that the length of AB
is 5 units, since exactly 5 congruent copies
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FIGURE 20

of the unit are needed to cover AB. It is
interesting to ask why this simple instru-
ment exists, and the answer is not difficult.
We have noted that measurement of length
means covering by congruent copies of a
unit segment, and there appears to be only
one reasonable procedure for doing this.
We start at an end point A of the segment
to be measured and mark off a congruent
copy of the unit segment in the direction
toward B. If this does not yet cover the
segment AB, we start at the end of tkis
first copy of the unit and lay off another
copy in the same direction. This process is
continued till AB is covered. At each stage
the next step is completely determined. But
this is precisely the way in which the ruler
is constructed. Thus, when we lay the ruler
beside the segment, the marks on it indi-
cate exactly the steps we would take if we
went through the process of measuring for
ourselves. The number attached to the end
point of the last segment needed is then
always the number of congruent copies of
the unit used in covering segment AB; i.e.,
it is the measure of the length of AB. Thus
a ruler is merely a set of congruent copies
of some unit segment laid end to end along
a line, each end point being associated with
a number. In using the ruler, we can simply
look at the number associated with the
last point used, rather than having to go
back and count the segments each time.

The discussion above is quite simple,
and we can surely realize the saving of
work in being able to read off lengths from
the numbers indicated on the ruler instead
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of counting the number of congruent copies
of the unit segment. Surely it would be
equally useful to have a similar instrument
for measuring areas. What is to prevent
us from making one? For the ruler we
covered as large a section of a line as
desired with non overlapping congruent
copies of the unit segment. In the case of
the plane, we can certainly cover as large
a part of the plane as we wish with non-
overlapping congruent copies of the unit
region. For example, using a square region
as a unit region, we can readily form a
network, as shown in Figure 21.
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FIGURE 21

If we imagine Figure 21 drawn on a
sheet of transparent plastic, we shall have
a device that could (at least in theory) be
fitted on any region to be measured. To
find the area in terms of the given unit
region, it will then only be necessary to
count the number of unit square regions
needed to cover the region being measured.
This is indeed correct and on occasion can
be very useful. In the case of the ruler, how-
ever, we were able to avoid the tedious
counting process by associating numbers
with the points of the scale so that it was
necessary only to look for the number asso-
ciated with the end point of the last seg-
ment used. Can something similar be done
with our network of square regions? Un-
fortunately the answer is no, and for a very
interesting reason. Essentially it is because
of the variety of shapes of regions to be
measured. Differently shaped regions may
require a different order for the placement
of the covering unit-square regions. Thus
the order in which we would place the unit-
square regions to cover the rectangular re-
gion in Figure 22A is quite different from
the order needed for the region in Figure
22B. Hence if we number the square re-

FIGURE 22A FIGURE 22B

gions on our transparent sheet of plastic so
that the regions numbered 1, 2, 3, 4 will
fit on Figure 22A, then no placement of
the plastic will have these same square
regions covering the region of Figure 22B.
Thus it is not possible to assign numbers
to the squares on the plastic so that with
proper placement an area can be read mere-
ly by noting the largest number associated
with a square in the covering.

It is this lack of a two-dimensional ruler
that makes the choice of the unit square
region so desirable, since, in this way, one
can deduce the area of a rectangular region
in the usual way by using the linear meas-
ures of the sides. Thus in Figure 23 if the
length of the rectangular region is 3 units
and the width is 2 units, then the area of
the region, i.e., the number of unit-square
regions needed to cover it, is 2 3, or 6.
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FIGURE 23

Paving the plane

As was remarked above, there are many
possible choices of region that allow us
to pave the plane with congruent copies.
While the paving with square regions is
the choice commonly made in discussing
area, there is interest in considering such
pavings in their own right. Pupils may find
it interesting to discover as many such
pavings as possible. It may be of interest
to observe that a paving can be given
using a unit region bounded by any triangle
or any quadrilateral and some hexagons.

In addition to their inherent interest,
some of the pavings suggest geometric facts
that pupils will eventually see as geometric
theorems. Two examples of such results
will be given as a conclusion to this dis-
cussion.



70 INSTRUCTION - TECHNIQUES

Consider a paving with triangular re-
gions. One such paving is shown in Figure
24. The triangular regions are all con-
gruent to the unit region shown. The small

FIGURE 24

numerals have been inserted in the draw-
ing of the unit region to identify the three
angles and have also been shown in part
of the pavin,;. An examination of the pav-
ing about a point as shown in Figure 24
indicates two angles congruent to angle 1,
two congruent to angle 2, and two con-
gruent to angle 3. This appears to suggest
that congruent copies of angles 1, 2, and 3
(with their interiors) can be put together
to fill up the space on one side of a line.
Since angles 1, 2, and 3 are the angles of
a triangle, this is the geometric fact that
the pupil will eventually see embodied in
the theorem that the sum of the degree
measures of the angles of a triangle is 180.

As a second example, consider the pav-
ing shown in Figure 25, with regions whose
boundaries are isosceles right triangles. This
is actually the familiar paving with square

FIGURE 25

regions, except that each square tile has
been cut by a diagonal.

One of the triangular tiles in Figure 25
has been shaded for convenience. For each
of the two shorter sides of this triangular
region note the square region, which has
been outlined with a heavier line. Each
of these square regions consists of two
of the triangular tiles. Hence if the tri-
angular region is taken as the unit of area,
each of these squares has an area of two
units. Next observe the heavily drawn
square whose side is the hypotenuse of the
triangle. This is seen to consist of four
of the triangular tiles and so has an area
of 4 units. Thus the square region on the
hypotenuse has an area that is the sum
of the areas of the square regions on the
two shorter sides. This is a special case of
the famous theorem of Pythagoras that
claims that this relation holds for all right
triangles. A legend suggests that it was by
looking at such a pattern that this theorem
occurred to Pythagoras.

Conclusion

The major purpose of this presentation
has been to exploit the idea that the con-
cept of congruence is one of the most
fundamental and fruitful ideas that arise
in our intuitive perceptions of geometric
relationships. In particular, it seems to
provide the appropriate means for describ-
ing at the elementary school level the
essential meanings for the measurement of
segments, angles, and plane regions. The
same ideas can readily be extended to the
discussion of the volume measures of solid
regions.



InstructionRationale
Techniques and methods are of doubtful worth without good reasons

for their use. An effective teacher's rationale is more important than
a bag of tricks. Many techniques are found in this book of readings,
and nearly all of the articles have direct suggestions for teaching
approaches or special methods. The articles placed in this last grouping
are no exception and contain many practical suggestions for the
teacher. However, these articles particularly develop c'sect or implied
reasons for using techniques. Most of the authors in this section adhere
to a similar philosophy, but each has a somewhat different point of
view to express.

The initial article of this section contains a comprehensive outline
of suggested content for the elementary school geometry program.
Egsgard, in this paper, develops not only the scope of a program but
also illustrative methods and techniques. Clearly written and concise,
it presents a very fine overview of a well-planned geometry course
of study.

Concern for the teacher is the focus of Inskeep's article. A brief
résumé of reasons why geometry should be taught is given, followed by
suggestions for the teacher who would implement geometry in his
teaching. This discussion is directed to primary teachers, but it will be
of value to any teacher who has not taught geometry before.

Vigilante's discussion helps to present some of the reasons, both
psychological and pedagogical, why geometry should be taught. This
discussion, also, is geared to the primary grades but develops a ration-
ale that can be accepted for all grades. His essay will appeal to the
reader for whom cursory mention of the need to teach geometry is
not enough.

Another aspect of mathematics instruction is the part geometry
plays in contributing to other areas. Robinson presents the worth of
geometry and geometric approaches to other topics in mathematics.
For many mathematics educators this article will furnish a most
compelling reason for teaching geometry.

Skypek has investigated the thinking of Piaget. Using some of
Piaget's conclusions and ideas related to the development of geometric
concepts in children, she emphasizes the impact upon the curriculum.
There are good reasons from a psychological point of view to introduce
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and develop the study of geometry early in the grades. Skypek also
deals with the content that would be appropriate for the curriculum,
in keeping with the theories of Piaget.

The concluding article of this section is a nicely blended combina-
tion of ideas for teaching and reasons for introducing geometry early
in the experience of the child. Brune covers the scope of the curriculum,
concurrently showing illustrative techniques. Moreover, he gives a log-
ical basis for geometry in the early grades, noting the importance of
informal geometric readiness to the formal axiomatic study to be
undertaken in the secondary school.

Taken compositely, the articles in this section deal directly with the
questions of why geometry should be taught in the elementary school
and what geometry should be taught there. The rationale for the how
of teaching is also included. The teacher will get a clear understanding
of ways to involve his children in geometry. Involvement and instruc-
tion! Instruction geared to involvement! These are the objectives for
which this book of readings has been compiled.



Geometry all around usK-12

JOHN C. EGSGARD, C.S.B.

John Egsgard teaches at St. Michael's College
School, Toronto, Ontario, Canada. He served as a
member of the Board of Directors of NCTM, 1965-68.

There is growing evidence among mathe-
matics educators that geometry should
be experienced in each year of schooling
from kindergarten through grade 12. Ge-
ometry is the study of spatial relationships
of all kinds, relationships that can be found
in the 3- dimensional space we live in and
on any 2-dimensional surfne in this 3-
dimensional space. These relationships car:
be discovered all around us. Observe the
many different shapes in your environment.
This is geometry. Listen to the description
of the path of the latest space rocket. This
is geometry. Compare the photograph taken
with a polaroid camera to the object that it
pictures. This is geometry. Notice the sym-
metry to be found in a spherical or cubical
shape and the lack of symmetry in some
modern works of sculpture. This is ge-
ometry. All of these involve spatial rela-
tionships. Children are aware of spatial
relationships from their earliest days. In-
troducing them to the idea of geometry as
being concerned with shape and size in the
material world will help them to rtalize and
appreciate that mathematics is something
that plays an important role in the world
in which we live.

The geometry of the K-6 level should
begin in 3-dimensional space with the study
of solid shapes. From the earliest age the
child's experience is with solids, that is,
things in 3-dimensional space. In the pre-
operative stage, that is, K-2, the shape of
solids should be emphasized. In kinder-
garten the child should play with solids of
different shapes such as cubes, cones,
cylinders, spheres, rectangular boxes,
prisms, and pyramids. Perhaps the names
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of these should not be given in kinder-
garten, but the children should be able to
sort out solids that have a similar shape
when the solids have been mixed together.
In order to emphasize the idea of shape,
similar solids of different sizes should be
used, for example, cubes with edges of 1
inch, 2 inches, 3 inches, etc. (It is interest-
ing to note that some children do not
recognize a flat cylinder, such as a round
candy box, as a cylinder.) The first opera-
tion that the children should be able to
perform in geometry is sorting according
to shape. They should also be able to
recognize things that have ::-:::se shapes.
For example: rubber balls are like spheres;
tents like pyramids; cans and some pencils
like cylinders, etc. Later they will discover
how to order solids of the same and differ-
ent shapes according to size and learn to
measure their volume. Observe that the
examination of faces of such solids will
lead the children from 3-dimensional shapes
to 2-dimensional shapes. The concepts of
line segment and point will eventually grow
from the experiences the children have with
the edges and vertices of solids.

After the children have become familiar
with ,lifferent shapes they may use these
shapes to build walls. Assignments should
be given through which they may discover
which shapes fit together best without leav-
ing a gap. In this way they will find some
of the properties of these shapes. Here
are some examples of assignments. (Some
of the assignments are similar to those
found in the book "Shape and Size" of the
Nuffield Project.) In doing these assign-
ments, four or five children may work
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together. ..7ach group will have 24 of each
shape of a given size, namely, cubes, rec-
tangular boxes, spheres, prisms, cylinders,
pyramids, etc.

Using all the bricks of one kind, try to build a
wall that has two thicknesses of brick.
Repeat using all the different shapes.
What shapes are most easily uscd for building
walls?
Can you say why this is so?

In some groups all of the children will
decide to work on the same wall. In other
groups different children will work on dif-
ferent walls at the same time. In any
case, the children will find that the cube
and rectangular-shaped brick fit together
best. These assignments will help them rec-
ognize that this happens because these
bricks can occupy the same space in several
different ways.

Use the cubes to build a wall 2 bricks thick.
Take out a brick from the wall, turn it around,
and replace it in its hole.
How many different ways can you find to re-
place a brick?
Marking the faces of the brick in different
ways will help.

Use the rectangular bricks to build a wall 2
bricks thick.
Take our a brick from the wall, turn it around,
and replace it in its hole.
How many different ways can you find to re-
place a brick?
Are rectangular bricks or bricks of cubes ordi-
narily used to build walls?
Examine a wall to see how these bricks are
fitted together.
Why do you think this type of brick gives a
stronger wall?

Observe that the turning around of the
bricks is the beginning of the study of
symmetry under rotation. It also has a more
immediate purpose as the following assign-
ment indicates.

Examine the wall you have built. Look at the
corners of the bricks.
What type of corners do the cubes and rectan-
gular bricks have?
Why are these shapes used in building walls?

The ideas brought out will probably in-
clude the facts that the bricks have square
corners that fit together well, that the
bricks can be replaced easily, that it is

easy to make the top of the wall level, etc.
These ideas can be investigated further in
the classroom. The teacher will have to
introduce the children to the term "right
angle" for the "square corner" of rec-
tangular faces and show them how to make
a "right-angle tester" by folding a piece of
paper twice (fig. 1).

FIGURE 1

First Fold

Seccnd cold
(new edge is

folded over
on itself)

Right Angle

The children can be asked to try to find
other right angles in the classroom and
about the school and to test them by fitting
their paper right angle onto the shapes.

Through these and similar assignments
the children learn how to distinguish the
different 3-dimensional shapes and discover
some of the simpler properties of the
shapes. After these shapes have become
familiar, the children are ready to con-
sider size and measure of volume. Chil-
dren can be led to the notion of volume
through the process of sorting similar
shapes by size. Comparison of size can be
made by filling hollow shapes with things
such as water, peas, beads, pebbles, cubes,
and sand. Assignments similar to the fol-
lowing can be made.

fry 9
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2-dimensional shapes that they should be
able to recognize are found as faces of
the 3-dimensional solids they have been
usingnamely, the square, the rectangle,
the triangle, the circle. An assignment such
as the following will help the children to
recognize and sort different kinds of 2-
dimensional shapes. An inked stamp pad,
a set of solid shapes, paper, and scissors
will be needed.

You will need a large jar and a paper cup.
Guess how many cupfuls of water you will
need to fill the jar.
Pour water into the jar a cupful at a time until
it is full.
How many cupfuls of water did you use?
How close was your guess? Did you guess too
many or too few?

Other assignments can be given using a
shoe box, a small match box, some sand,
and also marbles and a glass jar. Students
will realize that marbles are not very good
for finding out how much space there is in
a jar. Ultimately the children will come to
understand that two cylindrical jars, for
example, are the same size (that is, have
the same volume) if the same number of
spoonfuls of sand are needed to fill each,
and that a jar that needs a greater number
of spoonfuls of sand to fill it is larger than
either of these. Once they can do this they
can sort any given set of hollow shapes
according to size. Note that the sorting of
sizes in this way leads to the notion of
units for measuring volume. The unit in
the last case is a spoonful of sand. The stan-
dard units come at a much later stage,
as does the formula £ x w x h.

So far we have seen that the study of
3-dimensional space begins with the sort-
ing of solid shapes, is followed by the
ordering of solids by size, which leads to
the measurement of volume. A similar pro-
gression should be followed in the study of
2-dimensional space as well: shape to size
to measure. Nevertheless the examination
of 2-dimensional shapes should begin im-
mediately after the children have become
familiar with different 3-dimensional shapes
and before they are able to sort solids
according to size. In the handling of solids
they will discover that some solids have
flat surfaces, some have curved surfaces,
and some have both flat and curved sur-
faces. When they encounter the cylinder
as they sort solids according to the type
of their surfaces, flat or curved, they will
gain one of their, first introductions to the
idea of the intersection of sets. The first

Take one of your solid shapes that has a flat
surface.
Press one of its flat surfaces on the stamp pad.
Print a picture of this shape on a sheet of
paper by pressing the inked face on the paper.
Do the same for the other flat surfaces of your
solid shape.
Cut out the different pictures of faces from the
paper.
How many pictures do you have?
Are any of these pictures of the same shape?
Which?
Repeat with a different solid shape until all
are done in this way.
Write about your results.

Eventually the children will come to
relate a specific set of 2-dimensional shapes
with each 3-dimensional shape and be able
to do the following assignment (fig. 2).

Use your set of solids to decide which of the
three solids in the top space has been used
to trace the set of faces in the bottom space.
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FIGURE 2

Later on, assignments such as the fol-
iming will help the children to realize that

oor I
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2-dimensional shapes can be classified ac-
cording to the number of sides. They should
be given a collection of polygons made
from colored cardboard with three sides,
four sides, five sides, etc.

Take the set of shapes and sort them into sub-
sets like this: those with 3 sides, those with A
sides, those with 5 sides, and so an. Make a
loop of string around each of your subsets,
or draw chalk rings around them on the floor.
What is the name of the subset of shapes with
3 sides?
Do you know the name given to tho subset of
shapes with 4 sides?

The children will do something like. this.

oD o v
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Subset of Triangles
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Subset of Quadrilaterals

In this way the children can learn the
names such as triangle, quadrilateral,
pentagon, hexagon, etc. Names such as
equilateral triangle, regular pentagon, par-
allelogram, and rhombus come at a later
stage after the children have learned some-
thing about the measure of length and
parallelism. The idea of congruence will
also be introduced later.

Once children, are able to sort 2-dimen-
sional shapes according to the minter of
sides, they should be ready to order them
according to size, i.e., according to area.
This sorting is done through the process
of covering these shapes with 3-dimensional
shapes or other 2-dimensional shapes. The
patterns shown by the faces of the cubical
and rectangular bricks thai the children
used in building walls can help to develop
the idea of covering a 2-dimensional sur

face. Most of the tiles that children see in
walls, the floors they walk on, the side-
walk; they jump on to and from school
use rectangular shapes, so the covering
work in the early stages will be largely
concerned with these shapes. When children
are looking at a wall to study the brick
pattern, they can be asked such questions
as "What shape do you see?" (Rectangles.)
"How could you make a pattern like this
using bricks?" Some answers that will be
received will be: "Draw around faces of
bricks"; "Use squared paper"; "Cut out
shapes from colored paper and arrange
them in patterns," and so on. Groups of
children can be given square and rec-
tangular tiles made from colored card-
board. The following assignment can be
made.

Make tile patterns by fitting the square shapes
together.
E,w many patterns can you make using the
rectangles?
How many patterns can you make using the
squares and rectangles together?

Once the children have the feeling for
covering surfaces, they can begin to com-
pare the size of surfaces using assignments
like the one below. Shapes such as squares,
equilateral triangles, regular pentagons,
regular hexagons, circles should be avail-
able with a sufficient number of each of the
same size to be able to cover the surfaces
being used.

Take all of the squares. Guess how many you
will have to use to cover the front of your
workbook.
Now use the squares to cover your book.
How many did you use? Was your guess too
large, or too t..nall?
Repeat with other shapes. Use only triangles,
circles, hexagons, rectangles, and so on.
With which of these shapes did you find you
could cover the surface?
Which shapes were not very good for covering
the surface?

The children are then given several books
or similar 2-dimensional shapes having dif-
ferent areas of surface.
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can be added to introduce the notion of
symmetry.

Order these books by finding the size of the
surface of the front cover.
Which cover is largest? Which is smallest?
Write about this in your own way.

These assignments should culminate in a
discussion of the various ways the shapes
are used to cover the surfaces. This discus-
sion should lead to the idea of using squares,
triangles, regular hexagons for covering
surfaces. The reason why pentagons and
circles are not useful should also arise. By
analogy with the use of the cube for 3-
dimensional space, the children will see
that the square is probably best. Later the
area of a surface will be measured by the
number of standard squares required to
cover the surface, so that assignments
can be given in which the children use
paper marked in squares, say one inch or
one-half inch.

Cover the front of your book with the square
paper and find how big it is by counting
squares. Now do the same on the cover of a
different book. Which cover was bigger? How
do you know?

Draw around your right hand on the squared
paper. When your group has done this, find
out whose hand covers up the biggest surface
on the paper.

Similar assignments can be given where
the children measure the surface area of
a leaf, a cylindrical can, a box, and so
on. Once again, it is important to point out
that no formulas have been used to deter-
mine area. The formula t x w for a rec-
tangle will be discovered later.

So far I have concentrated on that part
of geometry for K-6 that can be called
the study of shape, size, and measure.
Occasionally I have made reference to
symmetry and the transformation of rota-
tion. I shall now look further into the
study of transformation in gr2des K-6.
The tile patterns used in the study of area
ere important aids to the understanding of
transformations. When studying the mak-
ing of tile patterns and the covering of sur-
faces, assignments such as the Following

Trace around the square shape. Trace around
the other rectangular shape.
Cut out the shapes from the paper.
How many ways can you fold these paper
shapes so that one half matches the other half?

The children should be asked to describe
what the shape on each side of the fold
looks like. Most will find this way of fold-
ing:

Some will find this way of folding:

The same type of work can be done with
other 2-dimensional shapes such as tri-
angles and pentagons, but at a later stage
in the development. The idea of symmetry
or balance in shapes should be investigated
in other ways. One avenue for exploration
is pattern work in arts and crafts (fig. 3).
Another is in the study of blot patterns
(fig. 4). In any case the children should
try to find the line or axis of symmetry.
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FIGURE 3

Observe that a line of symmetry is also a
mirror line for a reflection transformation.
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FIGURE 4

The following assignments help intro-
duce the notion of translation. The children
are given a cardboard :;quare and these
three patterns in turn (fig. 5). When a

2

FIGURE 5

figure is moved along a straight line with-
out turning the figure, then a translation
transformation has been performed on the
figure.

How could you show that the cardboard square
is the soma shape and size as each square in
the pattern?
How could you use the cardboard square to
trace out a pattern like the given one? Trace
out the pattern.
How many different paths can you find along
which you can slide the cardboard square from
position 1 to position 2, so that the cardboard
is always passing over a square in the pattern?
You must not lift the square from the page
nor turn it around.

Similar questions can be asked for patterns
of the same kind that contain rectangles,
triangles, and rhombuses. The third pat-
tern can be used to show that a single
translation may be the "sum" of several
other translations.

After the ideas of translation, reflection,
and rotation have been grasped, patterns
such as those in figure 6 can be used to
emphasize the differences among the three.
For each of the patterns I, II, and III, the
children will be given a piece of colored
cardboard of the same shape and size of

each shape in the pattern and will be asked
these questions:

Is your cardboard shape the same shape and
size as any shape in the pattern?
Which? How do you know?
What type of transformation will take your
cardboard shape from position 1 to position 2?
From position 1 to position 3? From position 1
to position 4?
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FIGURE 6

II

In pattern I, a reflection in the line com-
mon to positions 1 and 2 carries the shape
from 1 to 2, while a translation carries it
from 1 into 3 or 4. In pattern II, a rota-
tion about the midpoint of the segment
common to 1 and 2 brings the shape from
position 1 to 2. A translation will take the
shape from 1 to 3 or 4. In pattern III, a
rotation about the midpoint of the segment
common to 1 and 2 will carry the shape
from 1 to 2. A translation carries it from
1 to 3 and a rotation or reflection from
1 to 4.

The idea of composition of transforma-
tions can be introduced with these patterns
by asking for the succession of transforma-
tions needed to go from position 1 to posi-
tion 5 in patterns I and II.

In pattern I a reflection and a transla-
tion are most obvious; in pattern II a rota-
tion and a translation or a reflection are
sufficient; in pattern III a rotation, a trans-
lation, and a reflection are usually selected.
The idea of composition of transformations
can be introduced by asking for the trans-
formation or transformations needed to go
from position 1 to position 5 in patterns I
and II. In pattern I a. reflection to position
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2 followed by a translation to position 5

is usually suggested first. In pattern II a
rotation from position 1 to position 2 fol-
lowed by a translation to position 5 will
be selected by most children. In pattern II
some children will see that it is possible
to rotate from position 1 to position 5 using
only one transformation.

Assignments such as the preceding, to-
gether with discussion should be means to
the clear understanding in grades K-6 of
the concept of transformation. This knowl-
edge will prove of considerable use in the
grade 7-10 level. For example, assignments
can be made that will lead the children to
discover certain properties of the parallelo-
gram and the rhombus. Strips of cardboard
with a hole punched about a quarter of an
inch from each end will be needed. There
should be at least four strips of two differ-
ent lengths for each child.

Fasten four strips of the some length, using
paper fasteners, to make a rhombus.

Place this on a sheet of paper. Trace around
the inside of the framework. Cut out this

rhombus shape.
How many axes of symmetry has this shape?
Fold it along one of the axes of symmetry so
that one half matches the other.
What can you discover about the lengths of
the sides that fit on to each other?
What can you discover about the angles?
Now fold it along the other axis of symmetry.
What does this tell you about the sides and
angles this time?

The children should discover that the angles
at the opposite corners are congruent. Some
may even notice that the diagonals meet at
right angles.

Rotation can be used to help the chil-
dren discover a similar property for the
parallelogram.

Fasten four strips together as before, two of
one length and two of another length, with
strips of the same length opposite to each
other to form a parallelogram.
Use the strips to make different parallelogram
frameworks.
Draw some of these shapes on thin cardboard
by drawing along the inside of the strips.

Cut out the parallelograms drawn on the
cardboard.
Now place the cutout shape on a sheet of un-
lined paper and draw a frame around it.
Discover how many ways you can fit the card-
board shape into its frame without turning
the shape over.

Discussion should bring out that "half
a complete turn" or a complete turn will

do this. Immediately following the discus-
sion the following assignment should be
completed.

Fit one of the cardboard shapes into its frame.
Now make a half turn with the shape so that
it fits into the other half.
Look at the angle colored red. Does it fit Into
its new position?
Does the angle colored blue fit into its new
position?
Repeat for several of your cardboard shapes.
What can you discover about the angles of a
parallelogram from this?

Children at the grades 7 and 8 level can
also use the composition of transforma-
tions to get their first introduction to the

group properties without making use of a
number system. For rotations of a square
about its center, closure is exemplified by
the fact that a rotation of 90° followed by

a rotation of 180° is equivalent to a rota-
tion of 270° (fig. 7).

The lack of the commutative property

90°
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/
1111 I-

VO°

FIGURE 7

r
/

FIGURE 8
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under composition is evident from the fact
that a rotation of 90° followed by a re-
flection about a vertical axis of symmetry
does not give the same result as a reflection
about a vertical axis of symmetry fol-
lowed by a rotation of 90° (fig. 8).

Children have great fun playing with
square cards to test these and the other
group properties.

Let us return to grades K-6. The fol-
lowing chart summarizes what I think
should be taught in geometry at this level

and indicates some of the relationships
among topics (chart 1).

The next chart is a continuation of the
first and is concerned with grades 7-10
and 11-12. Vectors can be introduced as
soon as the graph of a point is understood.
The section on deductive proof in grades
7-10 is not to be considered as a formal
organization of Euclidean geometry. Rather
there should be short sequences of related
theorems based on the congruence and par-
allel facts established in earlier grades.

CHART 1

SHAPE SIZE MEASURE

SHAPE & SIZE
I first notions

of length

r
SHAPE
lines & points

kfiZE
classification in 1 -D,
lines, rays, segments,
betweenness

MEASURE
length
standard units

SHAPE
play stage

K-6

SHAPE
filling 3D space,
sorting

SIZE 3D
order ng by
filling-7--

SHAPE
names of
polyhedra

SHAPE & SIZE
parallel, perpendicular,
horizontal, vertical

3
to
6

y

SHAPE
2D
sorting

SHAPE
symmetry
tile patterns
beginnings of
transformations

V SIZE
covering 2D
surfaces
ordering

SIZE & MEASURE"
volume
standard units
model construction

SIZE & MEASURE
angles
amount of turning

IGRAPHICAL
REPRESENTATION

PROJECTION
enlargement
similarity
scale drawing

SHAPE
classification of
2D shapes

MEASURE
area
standard units
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A

to
2

TRANSFORMATIONS
study of tile patterns
translation, rotation,
reflection, discovery
of invariance

SHAPE & SIZE I
congruence
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Axiomatic deductive geometry has been
delayed until grade 11 or 12 and this for
the best. students. I am inclined to agree
with the British view that it is suitable
for the top 5 percent or less of the stu-
dent body.

The learner can be challenged to in-

41

TRANSFORMATIONS
composition
group properties

TRANSFORMATIONS
enlargements
dilatations
similar triangles

DEDUCTIVE PROOFS
FOR CIRCLES

11 to 12

A B

SIMPLE
COORDINATE
GEOMETRY

terpret the tangible world of spatial rela-
tionships that exist in his environment.
Discovering these relationships will help
learners interpret and appreciate mathe-
matics. The simple ideas can lead to the
abstraction of geometrical ideas of space
and size.

CHART 2

C

VECTORS
as ordered pairs I
as directed line
segments

PROPERTIES OF
2D FIGURES
by measurement
symmetry
t iangle, circle,
parallelogram

SIMPLE DEDUCTIVE PROOFS
properties of lines and
simple polygons
Euclidean vector
transformations

AXIOMATIC DEDUCTIVE
GEOMETRY

MATRICES &
TRANSFORMATIONS

CONICS I

7
to
10

COORDINATE GEOMETRY IN 2D
vector geometry
analytic geometry
reflections, translations

COORDINATE GEOMETRY IN 3D
vector geometry
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ecommendations for teaching geometry
to young children run as a thread through
much of the recent literature. In the Cam-
bridge Conference Report of 1963, it was
recommended that "geometry is to be
studied together with arithmetic and alge-
bra from kindergarten on."1 The Cam-
bridge Conference Report of 1967, dealing
with teacher education, suggested early
merging of arithmetic and geometry, in-
struction in spatial relationships, and the
study of standard shapes.2 It was felt that
geometry provided a rich area for an in-
tegrated study of abstract mathematics and
the environment. In the preparation for
statewide adoption of mathematics texts,
the State of California recently reaffirmed
the need for geometry as an integral part of
the primary-grade curriculum.3 Other states
and groups have made similar recommen-
dations.

It might be inferred that this desire for
primary-grade geometry is confined to

1 Edutational Services Incorporated, Goals for School
Mathematics: The Report of The Cambridge Conference
on School Mathematics (Boston: Houghton Mifflin Co.,
1963), p. 33.

Educational Development Corporation, Goals for the
Mathematical Education of Elementary School Teachers:
The Cambridge Conference (Boston: Houghton Mifflin
Co., 1967), pp. 8-9, 100-101.

'California State Department of Education, Mathe-
matics Program, K-8: 1967-68 Strands Report, Part 1
(Sacramento, Calif.: The Statewide Mathematics Ad-
visory Committee, 1967). Also The Bulletin of the Cal-
ifornia Mathematics Council, XXV (October 1967), 5-15.
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postwar and "modern mathematics" em-
phases. At the turn of the century, Wil-
liam W. Speer wrote and published a small
book designed for primary-grade arithme-
tic instruction? Throughout this book geo-
metric experimentation formed a kind of
unifying strand for much of the recom-
mended arithmetic experiences. Solids be-
came the media for initial experience with
geometry, and other geometric exercises
formed the basis for number and meas-
urement concepts. Of earlier vintage,
Thomas Hill's Preface to First Lessons in
Geometry, 1854, included this commen-
tary:

I have long been seeking a Geometry for be-
ginners, suited to my taste, and to my convic-
tions of what is a proper foundation for scientific
education. . . . Two children, one of five, the
other of seven and a half, were before my mind's
eyes all the time of my writing; and it will be
found that children of this age are quicker of
comprehending first lessons in Geometry than
those of fifteen.5

There is considerable agreement as to the
desirability of including geometry in the
primary grades.

William W. Speer, Primary Arithmetic: First Year.
For the Use of Teachers (Boston: Ginn & Co., 1897),
as reproduced in 1940.

'Thomas Hill, First Lessons in Geometry (1854),
Preface, as quoted in The Teaching of Geometry, Fifth
Yearbook of the National Council of Teachers of Math-
ematics (Washington, D.C.: The Council, 1930), p. 10.
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Evidence in support of these recom-
mendations for geometry in the primary
grades may be categorized into three
classes: (1) primary-grade children's abil-
ity to learn geometry, (2) the existence of
successful ongoing projects in primary-
grade geometry, and (3) the intrinsic
worth of geometry. As discussed in this
paper, the primary grades are considered
to be the preschool (including kinder-
garten) and the first three grades of the
elementary school. The remainder of the
discussion is organized to include the
above three categories, implementation of
geometry instruction in the primary grades,
and teaching suggestions.

Children's ability to learn geometry
The most impressive evidence as to the

ability of primary children to learn geom-
etry comes from the work of Jean Piagets
Piagetian results also indicate the form and
content of these early experiences. Two
generalizations from his work are worth
noting. The first of these deals with the
potential content of early instruction. Chil-
dren understand topological ideas first, fol-
lowed by those of projective geometry, and
then they finally grasp Euclidean concepts.
The topological concepts include the ideas
of proximity, order, enclosure, and con-
tinuity. Children are able to determine the
interior and exterior of such closed curves
as a boy's marble ring or a girl's hopscotch
pattern. Shapes and lines, including the
number line and the idea of order, can be
grasped by primary-grade children. Ideas
of measurement associated with Euclidean
geometry come later. For most children,
the ideas of our formalized geometric sys-
tems will be preceded by an intuitive de-
velopment of simple topological concepts
singled out and fused into the less general-
ized projective and Euclidean ideas.

Another important finding from the
work of the Geneva school is the consistent

For a resume of these and other findings of Piaget,
see John H. Flavell, The Developmental Psychology of
lean Piaget (Princeton, N.1.: D. Van Nostrand Co.,
1963), PP. 327 -41.

statement for developmental learning.
Children will learn by manipulating their
environment, and geometry can provide
the vehicle for this manipulation. Intuitive
ideas follow and depend upon the en-
counter of the child with his environment.
For this reason, a primary-grade teacher
will probably give children solids to touch
and feel. The primary-grade experience
will also include much experimentation
with the visual presentation of shapes as
well as the manipulation of objects.

The results of other research tend to
support the fact that children can and do
learn geometry at an early age. The em-
phasis given here to the Geneva school is
due to the direction which the results give
for introducing and teaching geometry to
children. In addition to the work of edu-
cational psychologists, there is a growing
body of data from teachers to indicate that
children can handle geometry well and
without harm to other emerging concepts.
Some of these data will be dealt with in the
section that follows.

Projects in primary geometry

The British and Canadian educators
have done considerable experimentation
with primary-grade geometry. There are
also schools and groups in this country
taking active parts in the development of
geometry for the primary grades. However,
only two projects will be noted in this sec-
tion, both of which reflect the influence of
the Geneva school of educational psychol-
ogy. These two projects are (1) the Eng-
lish work as described in the publication
of The Schools Council, Mathematics in
Primary Schools,' and (2) the Ontario
Geometry Projects

The English suggestions cover more

7The Schools Council, "Mathematics in Primary
Schools," Curriculum Bulletin No. J (2nd ed.; London:
Her Majesty's Stationery Office, 1966).

Ontario Institute for Studies in Education, Geometry:
Kindergarten to Grade Thirteen (Toronto, Ontario: The
Institute, February 1967). Also Ontario Mathematics
Gazette, Special Elementary School Edition, September
1966, pp. 5-13, 42-48; October 1967, pp. 7, 8, 14-24,
27-33; and THE ARITHMETIC TEACHER, XIV (February
1967), 90-93, 136-40.

Pq
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than geometry and give a completely mod-
ern flavor to the curricular offering. Some
of the major topics covered in thy, project
are shapes, dimensions, symmetry, simi-
larity, and some work with limits through
a geometric approach. Emphasis is placed
upon the learning of concepts by the ma-
nipulation Of the environment and by di-
rect experience with constructive and sen-
sory activities. Some of these intriguing
activities include working with tiles and
shapes to cover areas and the handling of
solids with attendant description of faces,
edges, and vertices. Among the older pri-
mary-age groups, some intuitive grasp of
limits is developed by reference to the
spiral and sets of contracting (or expand-
ing) squares.

The Canadian experience was somewhat
different in that specific attention was de-
voted to geometry as such. The strand of
geometry was drawn from kindergarten
through high school. The geometry de-
veloped for the primary grades included
class instruction in single topics, group
work with "assignment cards," and flexi-
ble grouping for exposure to many experi-
ences. The emphasis was placed upon in-
dividual experience with mathematical
models and personal experimentation by
the children. Classification of shapes by
size and other attributes, work with geo-
boards, and applications to art were among
the activities in which primary children
participated. An interesting comment was
made by one of the Canadian primary
teachers participating in the project: "Ge-
ometry became the children's favourite
subject. Why? 'Because,' they said, we
can do it ourselves.' "0 The results of both
of these projects should challenge teach-
ers to teach geometry in the primary
grades.

Intrinsic worth of geometry

There are two major intrinsic reasons
for considering geometry as a primary-

9 Sandra Rivington, "A Primary Teacher's Impression,"
Ontario Mathematics Gazette, October 1967, p. 7.

grade topic: (1) there is desirable mathe-
matical content to be derived from a study
of geometry early in the child's experience;
and (2) children are surrounded by obL
jects which have geometric significance.

Geometry provides a sound mathemati-
cal background for children. Many topics
which are treated in the intermediate
grades and secondary schools lend them-
selves to geometric interpretation. For
many children, the only geometry they re-
ceive is that offered in a secondary school
formal course. By this time the potential
usefulness of initial experience in geometry
has been lost. In addition to readiness,
every child should have some geometry to
be mathematically literate. Regardless of
his plans for college or vocation, there are
some geometric ideas which should be in
his common knowledge. Many of these
ideas can be introduced in the primary
grades. Geometry is desirable mathematics
for young children.

Geometry is everywhere! This may be
an exaggeration, but it is evident that we
live in a sea of geometric shapes. We are
inundated with terms and phrases which
have geometric significance. The Pentagon
in Washington is an example, as is the vil-
lage square. Nature also weaves a beauti-
ful, nonabstract array of geometric models.
Parallel lines are seen in architecture and
in the spacing on theme paper. Modern
slang includes the term "cube," and the
delta wing suggests a particular shape. The
list of applications in art, music, and science
is nearly endless, and we live in homes or
work in offices where shapes of one sort or
another enclose us. Environmental geom-
etry certainly has a place in the curricu-
lum.

Implementation

Some readers may feel convinced that
geometry should be taught but still hesi-
tate to implement their convictions. For
this reason, the following suggestions are
given as helps in getting a geometry pro-
gram started in the classroom. The fol-
lowing four recommendations are not nec-

59
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essarily equal in substance or possible
results.

Experiment with a modest lesson at first.
A small dosage can be a kind of pilot study
for the particular experiences the teacher
feels he can handle. Ideas from workshops,
journals, student teachers, and other
sources may give incentives. Then the
steps to implement the teaching can be
taken deliberately and carefully. One well-
executed lesson is a stimulus for others.

Set aside a special day specifically for
geometry. This suggestion is made for
teachers who like to tackle one thing at a
time. Geometry is probably best integrated
into the total mathematics program, but
experimentation in a concerted fashion
may give the teacher the confidence he
needs to weave it into the rest of his pro-
gram.

Integrate geometry into your lesson
plans. This suggestion requires more so-
phistication and dedication than the two
previous ones. A teacher will need to plan
his program in such a manner that geom-
etry is fitted into his regular schedule. He
my decide to use a special day, or he may
have "quickie" lessons at intervals. The
important point is that geometry should
become a functional part of the entire
mathematical offering.

Actively seek out information of the con-
tent and pedagogy of geometry. Without
ideas and some knowledge of the subject,
many teachers will hesitate to take any of
the previous suggestions. For this reason,
this last suggestion is crucial to the imple-
mentation of any geometry in the class-
room. Some sources include members of
the local mathematics council, teachers in
other grades, and interested administra-
tors. THE ARITHMETIC TEACHER is a good
source for content as well as pedagogy. 10
Once a teacher gets a taste for the subject,
he will find other sources as well. With

10A copy of an annotated bibliography of recently
published articles of THE ARITHMETIC TEACHER that per-
tain to the teaching of primary-grade geometry may be
obtained by request from the author, San Diego State
College, San Diego, California 92115.

background in content, a teacher will find the
topic a challenge to his ability to teach it.

In the final section of this paper some
suggestions for teaching geometry are
given. The reader will wish to use his own
creativity in extending their usefulness.

Teaching suggestions and techniques

The most important suggestion for
teaching geometry is neither specific nor
comforting. Do some personal research
with your own children and develop your
own techniques. This will seem obvious,
but it will produce far more satisfying re-
sults than all the "copied" or "adapted"
ideas you may gain.

A more specific suggestion for the pri-
mary-grade teacher is to start with simple
objects. As has been pointed out, the en-
vironment is rich in geometric models.
Capitalize on these. Look for shapes in
the room. Compare shapes in dress pat-
terns, room decorations, books, and other
pictorial material. Ask the children to
bring shapes from home such as are found
in the leftover scraps of mother's new
dress or the remainder ends of wallpaper.
There are many examples of shapes such
as the circle, squLre, rectangle, and tri-
angle to be obtained by simply searching
for them. Simple solid objects can also be
used in a creative manner. With common
building blocks such as are found in many
primary classrooms, faces and "points"
may be counted or described. It is prob-
ably wise to begin with solids for plane-
figure identification. This type of instruc-
tion differs from the formal approach to
geometry via the point-, line-, shape-defini-
tion route. Give children manipulative ex-
perience with shapes and solids, and the
definitions will come quite naturally.
Proper mathematical names play an im-
portant part in your instruction as the
need arises to talk about the children's dis-
coveries.

Organize the classroom for small-group
experimentation. Try arranging your chil-
dren in small groups as was done by
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Black." (There were forty-two children
in her classroom!) This suggestion will re-
quire extra effort at first, but once some
of the tasks and assignments are developed,
the work will become less burdensome.
The children in Black's room were sent to
small-group centers, each of which had a
separate activity. Some centers included
sets of solids to examine and describe.
Others had game-like activities and graph-
ing. For each of the activities there was
adequate opportunity to experiment and
discover ideas.

Another idea, which is hardly novel,
deals with the room environment. Arrange
your room to reflect geometry. Use the bul-
letin boards for display and for the chil-
dren's work. Such titles as "Watch for the
Mystery Shape!" and "What's My Line?"
may serve to stimulate ideas for bulletin
board arrangements. Encourage the chil-
dren to display and categorize shapes that
have been found in magazines and news-
papers. Teachers may find pictures of
bridges, modern engineering feats, and in-
teresting architecture to enhance the room
environment. Do not neglect the study
center! On a table to one side of the room
the teacher may wish to have games and
assignment cards which the children may
use when other work is finished.

Procure materials which can be used to
teach geometry. Some of the materials and
devices which should become part of your
teaching aids are as follows: geoboards of
various sizes and shapes, pegboards, solids
(homemade, "home-collected" or com-
mercial), graph paper of various types and
sizes, and assorted large pictures that have
geometric applications. Other materials will
be discovered as the teacher gives atten-
tion to the problem of teaching geometry.
If available, an overhead projector can

nIsmet M. Black, "Geometry Alive in Primary Class-
rooms," THE ARITHMETIC TEACHER, XIV (February
1967), 90-93.

provide the teacher with another means for
visual presentations.

As a final suggestion, combine the teach-
ing of geometry with other areas of the
curriculum. The art period certainly lends
itself to the teaching of geometry. Even
the youngest child can be given some tac-
tile or sensory experience in art through
shapes and solids. Social studies and sci-
ence lend themselves to geometry. Repre-
sentations of various numerical ideas,
graphs of simple designs, maps, and indi-
cations of size occur frequently in these
areas. Look for geometry. The teacher who
emphasizes the aspect of "looking for
something" will find his children "seeing
it."

In conclusion, the following quotation
from Thomas Hill's Preface expresses the
philosophy of this paper.

I have addressed the child's imagination rather
than his reason, because I wish to teach him to
conceive of forms. The child's powers of sensa-
tion are developed before his powers of con-
ception, and these before his reasoning powers.
. . . I have, therefore, avoided reasoning and
simply given interesting geometric facts.12

Hill's developmental "stages" are very sim-
ilar to those of certain psychologists today,
even though his terminology may not be
that currently in use. His appeal to the
intuitive experience, his approach to in-
formal exercises, and his willingness to
permit children to experiment with geom-
etry are evident. However, no teacher will
work with primary-grade geometry unless
he knows the subject himself and is made
aware of the possibility of teaching it. One
article can only raise interest. The test of
interest is the teaching of some geometry
in the classroom. Enter into this most ex-
citing experience. Teaching geometry is
fun!

op. clt.
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Today the arithmetic program in the ele-
mentary grades is being reevaluated.
New ideas and approaches are being pro-
posed, discussed, and tested. One of these
ideas, the teaching of geometry in the ele-
mentary school, is being introduced as
early as kindergarten. One of the most ex-
tensive and well-known programs in ge-
ometry for the primary grades has been
developed by Patrick Suppes and Newton
Hawley at Stanford University. Their pro-
gram is more formalized than the experi-
ences some children have in their present
classrooms. The presentation of geometry
differs from one classroom or school sys-
tem to another. Some teachers find it very
essential; others are still questioning its
value.

Is teaching geometry in the primary
grades really worthwhile? There is much
opportunity for tangible and visual ex-
periences in this area which can make
things more interesting to the student and
increase his motivation. Nearly all the ex-
periments done have shown that the
children greatly enjoy working with this
aspect of mathematics. Facts can be
learned through the number line and
through geometrical shapes. The learning
of the principles of our number system
through multisensory experiences with
geometry could bring about better results.
For example, the teaching of fractions
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could be greatly enhanced by the demon-
stration of halves, quarters, etc., with geo-
metric shapes. The child, acquainted with
the concepts related to these shapes before-
hand, could be aided by learning them
in this manner. Experiments by Hawley
and Suppes show that it is possible to
teach concepts of geometry, and that
children can become efficient in construct-
ing and talking about the line segment,
perpendicular, bisector, angle, etc. Chil-
dren have also applied themselves to and
seemed extremely interested in learning
geometry.

It must be admitted, however, that not
everyone is certain about the value of
teaching geometry in the primary grades,
or even in the intermediate grades. Lamb
feels that this subject is not related to the
language arts program, and since the
curriculum is so concentrated with many
subjects already, geometry might not be
worth the teachers' efforts [8].* Goldmark
finds no practical application of geometry
to any other subject studied in the pri-
mary grades or to everyday life [4]. She
asks, "If geometry is discontinued after
the primary grades, has the learning been
meaningful enough to be retained? If it
continues through the grades, will the con-
cepts become too difficult for children of

* Numbers ht brackets refer to the bibliographic entries at
the end of the article.
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nine, ten, or eleven years of age?" Both
of these writers have had experience with
the formal-type presentation of geometry
to primary students. Perhaps the quota-
tion by Goldmark might have some valid-
ity in this case, although we must never
underestimate the capabilities of children.
One might ask, does a program need to be
so formal in its presentation and concepts?

The objectives of any program would
depend somewhat on the nature of the
program, that is, whether the program was
made up of formal or informal experiences.
Either type of program would have as one
of its overall objectives the development
of concepts regarding geometric figures.
I. H. Brune suggests that this objective
can be met by having the children study
and compare the form, shape, size, pat-
tern, and design of geometric figures [2].
They should also have experience in con-
structing and measuring the figures. R.
Briscoe points out that experiences in ge-
ometry provide primary children with
the opportunity to develop scientific
thinking [1]. Briscoe lists four specific
contributions of geometry:

1 Children can see space as something
they can understand, use, control, and
manipulate to their own advantage.

2 They learn the names and properties of
the basic geometric shapes and their re-
lation to space.

3 They learn how shapes can be useful to
mankind. An example would be tri-
angular supports used in construction
in building bridges and buildings.

4 Children learn to produce shapes.

Goldmark adds some other objectives
to the ones mentioned above. She points
out that children learn to nianipulate the
ruler, compass, and other instruments
used in construction. They derive their
satisfaction from the mastery of these
skills while they actively utilize the con-
cepts and terms which they are learning.
Another very important aspect is that
students learn to follow step-by-step
directions with precision. Many children

tend to be "skimmers"; that is, they learn
the general concepts of their various sub-
jects, but they fail to be specific and be-
come careless in their work. Following
directions in the construction of various
geometric shapes and patterns forces them
to follow directions carefully and accu-
rately. Teachers also must be very careful
to distinguish the marks on the paper
which represent a point, line, circle, angle,
etc., from the concept or idea which each
represents. Unless thill is done, children
will not have a proper understanding of
the geometry which they are learning.

Children must be ready to study ge-
ometry. Geometric readiness can be re-
duced to two main factors: subject readi-
ness and psychological readiness. There
are several activities which children can do
to become ready for experiences with ge-
ometry. Handling objects develops the
ideas of square corners, straight edges, and
curved surfaces. Playing with blocks gives
them oppo;:tunity to arrange the blocks
into patterns. They can cut geometric
figures, or learn of line segments, mid-
points, and congruency by working with
designs.

When beginning instruction in ge-
ometry, the teacher should relate the sub-
ject to children's everyday experiences.
The object of such a presentation is to
show the children meaningful relation-
ships rather than make them learn ab-
stractions from memory alone. Having
children notice geometric shapes in the
world about them can be meaningful.
There are many geometric patterns to be
observed, including round clocks and tin
cans, rectangular chalk boards, perpen-
dieular edges of a sheet of paper, window-
panes, buildings, bridges, church windows,
ice cream cones, wheels, sea shells, and
telephone dials. In presenting concepts of
relationships, the teacher can also use
familiar objects such as blocks, balls, and
patterns in cloth.

A good time to introduce geometry is
during Christmas or another holiday sea-
son. Children can use many geometric
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shapes and figures to make decorations.
They can cut out circular, triangular, and
square regions, and make pictures by
pasting them on another sheet of paper.
They can also make three-dimensional ob-
jects. Semi-circular regions are easily
made into cones, which in turn can be
converted into bells, or even Christmas
trees. Spirals cut from circular regions are
good decorations for the tree. Easter lilies
can be made from such shapes. There is
no limit to the possibilities. While en-
gaged in these activities, children experi-
ence the changes necessary to convert one
shape to another--the cut necessary to
make a "circle" or a "semicircle," the twist
necessary to change a "semicircle" to a
cone, the diagonal line necessary to form a
triangular region from a square region. As
Sweet and DeWitt said, we should show
that mathematics, as well as art and
music, has aesthetic appeal 1101. I believe
these activities will also cultivate the in-
terest of the children.

Children also may enjoy working with
subject-free geometric patterns. They
could cut out various shapes and make a
design with them, or perhaps they would
like to make designs by dividing one basic
shape into others. For example, Figure 1
shows equilateral triangles divided into

Figure 1

other equilateral triangles, and Figure 2
shows other patterns which children can
construct from an equilateral triangle.

Not only can children create patterns at
random, but they can be given problems
which call for manipulation to challenge
the student. Here are some examples:

1 See how many ways you can divide a
square into two congruent (identical)
parts (Fig. 3).

Figure 3

2 See how many ways you can divide a
square into four congruent parts (Fig.
4).

Figure 4

3 How many ways can you assemble three
congruent squares? (Fig. 5).

Figure 2 Figure 5

94
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4 Assemble four congruent squares in five
ways (Fig. 6).

Figure 6

5 Assemble two congruent equilateral tri-
angles together edgewise. How many
shapes can be formed? With three equi-
lateral triangles? (Fig. 7).

Figure 7

6 How many shapes can be formed by
joining four equilateral triangles edge-
wise? (Fig. 8).

Figure 8

7 Divide an equilateral triangle in to
three congruent parts in as many ways
as you can; into two parts (Fig. 9).

Figure 9

8 Divide the equilateral triangle into six
congruent parts; eight parts (Fig. 10).

Figure 10

Paper folding is also a good way to pre-
sent challenging ideas. Some suggest
using waxed paper rather than regular
paper for teaching because the wax makes
a white mark when creased. Some good ex-
ercises with paper folding for primary
pupils would be a straight line, square
corner, bisection, parallel lines, angles, di-
ameter and center of a circle. A pentagon
may be made by tying a strip of paper in a
knot, tightening and creasing flat, then
cutting off the long ends. Children can
learn much about symmetric patterns
also. They should fold paper to make two
perpendicular creases which divide the
paper into four equal parts. Then they
should fold to bisect the right angles
formed, and cut notches out of the paper.
All these activities will help them gain in-
sight into concepts of geometry through
personal experiences.

Another idea for the presentation of ge-
ometry is the use of the pegboard. Pegs
can be placed at the apex of the angles of a
geometric figure and then outlined with
yarn to form geometric shapes. Various
figures, such as a square, rectangle, tri-
angle, parallelogram, rhombus, pentagon,
and others can be made. The use of
brightly colored yarn will also make it easy
to demonstrate how one shape is con-
tained in another. This pegboard can also
be used to teach measurement, and is espe-
cially useful to set up a scale "drawing"
for problems such as determining the area
of or sectioning a plot of ground.

Objects, such as rectangular and tri-
angular prisms and cylinders, are useful
in the second grade to review arithmetic
facts which the children learned in the
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first grade. They can review counting by
enumerating the number of sides or edges
of a prism. Then, by counting the number
of lar er sides and the number of smaller
sides, the children can add to find the
total number of sides. They can subtract
the number of edges on a triangular prism
from the number of edges on a rectangular
prism to see how many more edges there
are on the rectangular prism. Here the
children can review the facts in a new
way, so that they are not bored with the
same activity they used in the first grade.

Another activity associated with ge-
ometry is work with an array of dots. The
children can determine the number se
quences as more rows are added. They
may enjoy comparing an array in the
form of a triangle with an array in a
square, both having the same number of
rows.

Geometry has other facets besides com-
putation of geometrical formulas. A ge-
ometry program for the primary grades
should be more exploratory and informal
at least in Grades 1 and 2. All students
should be given a purpose for learning
these facts; geometry needs application.

Children gain reasoning and deductive ex
periences through work in the application
of geometry.
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Many reasons have been given for the
inclusion of more geometry in the lower
grades. Certainly, geometry is an im-
portant subject in its own right, and as
certainly, it is unrealistic to postpone the
study of geometry until it can be ap-
proached in a systematic and rigorous way.
(Precision and rigor can best be appreci-
ated when we understand what we are be-
ing precise and rigorous about.) It is also
true that geometry is encountered in
everyday life, and that children do find the
subject interesting. What has not often
been pointed out is that geometry can ex-
tend and enrich the study of arithmetic.

Historically, geometry and arithmetic
"grew up together." The ancients studied
both, and Euclid, in his Elements, compiled
not only the geometry, but also the num-
ber theory known in his day. Thus the
separation of the two subjects appears to
be an artificial one; actually, they com-
plement one another.

In this article, we will discuss ways in
which geometry can add new dimensions
to some of the understandings we expect
children to gain in arithmetic. We will
explore five areas: measurement, prop-
erties of the natural numbers, the meaning
of fraction, order properties for the natural
numbers and rational numbers, and the
concept of operation.

Measurement
It is sometimes said that there are two

kinds of measurementthat related to
discrete quantities (called counting) and

92

that related to continuous quantities. In
the study of counting, we make frequent
use of physical models, presenting collec-
tions of pencils, marbles, books, and the
like which the child can see and touch.
The property of "discreteness" can be
made very obvious for the child if he sets
aside each object as he counts it or points
to each object in turn. But what can we
use as models for continuous quantities?
One continuous quantity we can measure
is time, yet we cannot display any "time"
for the child to see and touch. We measure
"capacity" but display only the empty
container. Even if we show a container full
of sand, it is not the sand which we are
measuring. Some reflection on the matter
suggests that "capacity" is a rather ab-
stract idea.

Geometry provides both models from
which a sense of continuity can develop
and situations in which "discreteness" can
be distinguished from "continuity," pro-
vided, of course, that we emphasize these
properties. Consider, for example, a path
joining two points in a plane. Such a path
is said to be connected: we can draw a
picture of it without lifting our pencil from
the paperthe pencil moves continuously
from one point toward the other. Figure
1 illustrates two such curves.

Figure 1
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We think of each of these curves as
being "all in one piece." We also think of
each of them as being a set of points. These
represent two fundamentally different
interpretations. We might say that one
interpretation is dynamic, the other static.
To emphasize the difference in these
interpretations and the consequences
arising from this difference, we might raise
the following questions:

1 Suppose we remove one point from
Curve I; will the curve still be "all in
one piece"?

We see, of course, that the answer de-
pends on our choice of the point to re-
move; if we choose either point A or
point B, the connectedness will be un-
disturbed; selection of some other point
of the curve will separate the curve into
two pieces. Each of the two separate
pieces, however, will retain its con-
nectedness.

2 If we remove one point from Curve II,
will the curve still be "all in one piece"?

Again we see that this depends upon
our choice of the point to remove; as in
the first case, removal of either "end-
point" (C or D) will not disturb the con-
nectedness property. Unlike the first
case, however, it is possible to remove a
point other than an endpoint without
separating the curve (try a point on one
of the loops).

3 Is a proper subset of Curve I ever con-
nected?

Looking back at question 1, we see
that a proper subset of a connected set
does not have to be connected. We can
see, however, that some proper subsets
may be connected. Suppose we select
some third point X on Curve I and look
at the subset of the curve consisting of
X, A, and all points of the curve "in
between." Such a subset is clearly con-
nected (as, of course, would be true of
the subset consisting of X, B, and all
points of the curve "in between"). Thus
we see that a proper subset of a con-
nected set may or may not be connected.

Another example of a proper subset of
Curve I which is not connected is the
subset consisting of the points A, X,
and B. This, of course, is a discrete sub-
set, and we note that a connected set
may have proper subsets which arc
discrete or connected (or neither).

The property of being "all in one piece"
is easily recognizable, and we need not try
to make it more precise. As a matter of
fact, preschool children may sense such a
property in an object even before they
sense its distinctness (or "oneness"). How-
ever, the school experiences accompanying
the study of counting may have disrupted
the perception of connectedness, and it
may be pedagogically wise to introduce ex-
periences in which the child can learn to
discriminate between "discrete" and "con-
nected" sets. As we have just seen, geom-
etry provides appropriate experiences of
this sort.

Extending our discussion, we can con-
sider closed curvespaths from one point
to another and back again. Again we con-
sider the two examples in Figure 2.

III

Figure 2

G H

IV

Here also we have sets of points, and
sets of points which have the property of
being "all in one piece." The type of curve
we have in mind is one whose picture can
be drawn without lifting the pencil from
the paper. In relation to these curves we
can also raise some questions:

4 If we remove one point from Curve III,
Is the curve still connected?

We see a difference between this
"closed curve" and the curves in the
previous examplesit is impossible to
separate this curve by removing a single
point.

5 Can Curve IV be separated by removal
of one point?
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There is exactly one "separating
point" for this curve; unless we remove
the point where the curve "crosses it-
self," the resulting set will still be connec-
ted. Is it possible to have a closed curve
with more than one separating point?

6 Is a proper subset of Curve III always
connected?

Our answer to question 4 tells us
that a proper subset of Curve III may
be connected. To see that a subset need
not itself be connected, we need consider
only that subset of Curve III which re-
sults from removing two points, or the
discrete set consisting of two points of
the curve. Students might think that a
set of two points "right beside each
other" would still be connected; this
gives us an opportunity to emphasize
that there is no such thing as "the very
next point." We do not draw the pic-
ture by drawing a "line of dots" because
such a procedure does not conform to
our idea of what a "path" is.

We have looked at some sets of points
which we have called "paths," and have
discussed the idea of connectedness. Now
we will examine some other sets of points.
For example, we might consider the line,
the plane, and space itself. "Space" is
defined as the set of all points. Each of
these sets of points is considered to be
connected.

Following the same procedure as above,
we might examine subsets of each of these.
Some subsets of the line are the segment,
the half-line, and the ray. Are these con-
nected sets? We could also pick a subset of
a line which consisted of three points (or
four, or two, etc.); would this subset be
connected?

We have already looked at some subsets
of the plane (Curves IIV and the line),
but there are many others. For example,
there is the subset of the plane interior to
Curve III, and the subset of the plane
exterior to Curve III. Then there is the
angle, the exterior (and interior) of the
angle, and the half-plane. Each of these is

a connected set. If we look for subsets of
the plane which are not connected, we can
think of any discrete set of points, or a
subset such as the plane with some closed
curve (a triangle, for example), removed.

Some subsets of space which we have
not already considered are the solids and
the portions of space bounded by solids.
We might use the cube as an example. Our
idea is that the cube is a connected set,
and we see that the subset of space in-
terior to (or exterior to) the cube is also
connected. Some subsets of space which
would not be connected would be any
discrete collection of points, or a subset
such as space with a cube removed.

Our purpose so far has been to emphasize
the difference between "discrete" and
"connected" sets, since geometry provides
us with examples of both. In looking at
the various examples, however, we can
scarcely avoid laying the foundation for
measurement in the geometric sense. One
feels intuitively, for example, that Curve
II is "longer than" Curve I, that the piece
of the plane enclosed by a loop of Curve II
is "smaller than" that enclosed by a loop
of Curve IV, and that some cubes are
"larger than" others. To make such intui-
tive ideas precise, we measure the lengths
of curves, measure subsets of the plane in-
terior to closed curves, measure solids, and
measure subsets of space !nterior to solids.
In other words, the terms "perimeter,"
"area," "surface area," and "volume" are
names applied to the measurement of con-
nected sets. We note also that we choose a
connected set as a unit of measurement in
each case.

Properties of the natural numbers
Geometrically, a natural number, N,

which is greater than one is a composite if
any collection of N objects can be arranged
in some rectangular form; that is, if the N
objects can be put into rows and columns,
with both the number of rows and the
number of columns being greater than one.
Twelve, for example, is composite, since
we can arrange twelve objects in any of the
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Figure 3

ways shown in Figure 3.' On the other
hand, seven is a prime number, because no
matter how we try, we cannot arrange
seven objects into rows and columns (ex-
cept one row or one column) without hav-
ing "one left over."

If, in working with our N objects, we
can put them into a square array (equal
numbers of rows and columns), we say
that N is a "perfect square."

Many teachers illustrate the com-
mutative property for multiplication by
placing objects into rectangular arrays in
two ways; what is suggested here is that
the children experiment with collections of
various sizes, determining for themselves
which numbers are "rectangular" and
which are not. Depending on when such an
activity is initiated, it could serve either
to introduce the multiplication facts or to
reinforce the learning of these facts.

Another geometric activity which can
aid in the understanding of the properties
of the natural numbers begins with a
collection of square-shaped regions. Sup-
pose we cut some of these, all the same
size, from a piece of paper. We can ask the
children if they can put several of these
together to make a larger square region.
As they experiment, it becomes obvious to
them that they cannot do this by putting
two pieces together, or three. Four pieces,

Some may object to calling this discrete colleotion "rec-
tangular." However, it may be argued that the viewer can
impose the "rectangular" interpretation on this array only if
he understands the 000neotedneee property.

however, can be put together to make a
larger square region (Fig. 4).

\

Figure 4

Next, we ask the natural question: Can
more pieces be put together to make a still
larger square region? Experimentation
shows that this cannot be done with 5, 6, 7,
or 8 squares; the next larger square re-
quires nine small ones. Continuing the
activity, we see that we require succes-
sively 1, 4, 9, 16, 25, etc., small squares to
make a larger one having the same shape.

Next, suppose we take triangular shapes
(Fig. 5) and raise the same question: Can
we put some of these together to make a

Figure 5

larger one of the same shape? Through
trial, we find that two will not do, or three;
again we find that a larger triangular
region requires at least four small ones
(Fig. 6).

Figure 6

(In case a child might think that three
will do, we emphasize that the interior of
our figure must be connected. See Figure 7.)

Proceeding, we discover that it requires
successively 1, 4, 9, 16, etc., small regions
to build a larger region of the same shape.
To extend geometric understanding, we
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Figure 7

might ask if other shapes would give the
same results; for example, can we build
larger rectangles from smaller rectangular
regions? What about parallelograms, or
circles? And, if so, how many will be re-
quired in each case? We might also extend
the activity to cubes: How many cubes
must be assembled to make a larger cube?

Concept of fraction
The "fraction pie" is a familiar device

for the introduction of fractions, and is
very convenient to use because of its sym-
metry. Geometrically, of course, the frac-
tion pie is not a pie at all, but a circular
region, a subset of the plane. In using it as
our unit, we are appealing to its property
of being connected. In other words, when
we begin the study of fractions, we select a
unit to partition, and we choose for our
unit something which is connected. To de-
velop understanding of the meaning of
fraction, then, suppose we choose for our
unit some other connected set. We might
consider any of the sets in Figure 8. Ques-

Figure 8

dons relevant to the meaning of fraction
which we could raise for each of the units
in Figure 8 are:

1 Can each of these be partitioned into
halves with certainty?

2 Is there more than one way in which
these units can be partitioned into
halves with certainty?

3 If there is more than one way to parti-
tion one of these units into halves, in
how many ways can this be done?

4 Can the above units be partitioned into
thirds with certainty? Into fourths?

A question which we must anticipate
from such a discussion is: Must the parts
of the unit be the same shape to be the
same size? A case in point is illustrated in
Figure 9, each piece shown being one-half
of a half.2

Figure 9

Since either a closed curve or the region
bounded by that curve might be selected
as a unit, we might examine the diagrams
in Figure 10. After studying the diagrams,

Figure 10

we might consider these questions:

5 If a region is partitioned into halves, is
the curve bounding that region neces-
sarily partitioned into halves?

6 If a closed curve is partitioned into
halves, must that part of the plane in-
terior to the curve necessarily be parti-
tioned into halves?

Also, while we are extending ideas, we
need not confine ourselves to plane figures.

a It has been determined that third-grade children can find
as many as twelve different ways of partitioning a rectangular
region into fourths,

I
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Figure 11

Five solids are illustrated in Figure 11.
Are there ways of partitioning the solids
other than those illustrated? In how many
ways can each of these solids be parti-
tioned into fourths with certainty? Can
we devise ways of partitioning these
solids into thirds with certainty?

Properties of order
for the natural numbers
and rational numbers
When we count, we say the word "five"

immediately before we say the word "six."
That five "comes before" six is not merely
conventionnotice that it is not the same
as saying that "a comes before b in the
alphabet." Rather, the statement "five
comes before six" expresses the mathe-
matical fact that five is less than six. We
can show this to children with discrete
sets of objects; we can also show this to
children geometrically with a number
line.

When we looked at curves before, we
stressed that the property of being con-
nected was related to drawing a picture of
the curve without lifting the pencil from
the paper. As we draw, we get to certain
points in the curve before we get to others.
In Figure 12, if we draw the path from A
to B, we get to point X before we get to
point Y. This fact is se obvious that the

Figure 12

reader may wonder why we bother to
mention it. We mention it because the
very fact that this is so obvious may mean
that it is easier for children to understand
what is meant by "five is less than six"
with the aid of the number line.

For the natural numbers, we actually
use a ray rather than a line; in drawing
Figure 13 we get to point X before we get
to point Y.

X Y

Figure 13

For the natural numbers, we have not
only order, but also order in a very par-
ticular way: 2 is 1 greater than 1, 3 is 1
greater than 2, etc. Thus on our number
line we do not select points at random, but
make use of a unit, and lay off this unit
in a regular fashion, beginning with the
endpoint of the ray (Fig. 14). Since point

I ABC I D E

Figure 14

A "comes before" point B, and since B is
one unit to the right of point A, it is
natural to assign the natural number 1 to
point A, the natural number 2 to point B,
and so forth (Fig. 15).

1 2 3 4 5 6

Figure 15

The number line gives a more "pano-
ramic view" of the very regular ordering
of the natural numbers. For some children,
this may be easier to understand than con-
sidering order in relation to discrete sets of
objects; for other children, it may provide
a visual summary of the order property
obtained from working with discrete sets.

Order among the rational numbers is
also important. Since we established a
unit to construct our number line, we can
then assign "fraction names" to other

r Sl
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I 2

Figure 16
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points on the ray (Fig. 16). Then we
might think about which of the following
is more helpful in understanding that
"1 is less than 1":

(a) "I is less than s because the more
pieces into which a unit is partitioned,
the smaller those pieces must be."

(b)

(c)

I ,

/4

Is it possible that different readers might
make different choices from these three? Is
it not possible that different children
might find one of these more meaningful
than the others? Is it not possible that one
of these "explanations" would be more
meaningful for the beginner (in the study
of fractions), whereas another would
be meaningful after fractions had bean
studied for a while?

Sometimes we make statements about
order which say more than simply "5 is
less than 6"; we may say, for example, "5
is less than 6 and greater than 4," or
is greater than and less than i." Alge-
braically, we write these "4 <5 <6" and
"f <I." At other times we say "5 is
between 4 and 6," and "i is between I
and I." These latter versions:really express
what we see (geo.rnetrically) on the num-
ber linenamely, that the point desig-
nated "i" :lies between the points named
"i" and "1." if we discuss this with chil-
dren, they may ask if every point on the
number line has a fraction name. This
gives the teacher the opportunity to ex-
plain that such is not the case, and that

other number systems will later be studied
which do provide number names for all
points on a line.

Extending the concept of operation
We can demonstrate to children that

2+3 =5 with discrete sets of objects
that is, we can join a set of three pencils to
a set of two pencils and determine the
numerousness of the union. We can also
demonstrate that 2+3 = 5 with connected
sets on the number line. To do this, we
tlnk of "taking a step of size 2" followed
by "a step of size 3." To represent this
pictorially, we let arrows represent the
stepa step of size 2 is represented by an
arrow 2 units long, a step of size 3 by an
arrow 3 units long. "Followed by" is rep-
resented pictorially as being laid end to
end (Fig. 17). The result can be seen (lit-
erally) to be equivalent to an arrow 5 units
long.

1 2 3 4 5 60111111D
Figure 17

Furthermore, this interpretation of addi-
tion applies more readily to addition for
the fractions than the concept of the join-
ing of sets. Although it may not be easy to
see what the sum of and I is through the
use of arrows, at least this interpretation
may be shown, whereas it is a little diffi-
cult to show what we mean by joining s of
a pie to of a pie. Actually, in the long
run, this geometric interpretation appears
to be more efficient; when faced with addi-
tion for the integers, for example, it is diffi-
cult to interpret (+2) + ( 3) in terms of
the union of two discrete sets!

Multiplication can also be interpreted
geometrically: 2X3 can be interpreted as
"2 steps of size 3," and can be represented
pictorially by two arrows, each three units
long, placed end to end. Furthermore, it is
easy to interpret subtraction as the inverse
of addition, and division as the inverse of

1
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multiplication within this geometric con-
text. Such an interpretation, like that for
addition, is appropriate for these processes
in the system of integers. This, of course,
is what we mean when we speak of "ex-
tending" the concept of operationpro-
viding a model which has wider applica-
tion than the first one studied.

Conclusion
We do not know with any degree of cer-

tainty that all children learn in the same
way. We know that all children do not
learn at the same speed, and strongly sus-
pect that they do not learn in the same
way. Thus a meaningful explanation to
one child may leave another "in the dark."
Knowing this, experienced teachers use a
variety of ways in which to present arith-
metic ideas to children. We have sug-

gested here that geometry has a contribu-
tion to make to the extension and enrich-
ment of certain understandings of arith-
metic. The very fact that we need pictures
to demonstrate geometric ideas means
that we have visual models for the associ-
ated ideas of arithmetic; all we need to do
is emphasize the connection between the
two.

Nor should we overlook the unique con-
tribution which geometry can make to
arithmetic: certain sets of points have the
property of connectedness. This property
of being connected is one which is closely
related to the concept of fraction, and is
basic to the concept of measurement.
Moreover, it can be used to impart new
meaning to concepts such as those of
operation, and of order and denseness
among elements of a number system.

1
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In trying to decide what to say about this
subject with only forty-five minutes in
which to say it, I asked a colleague for sug-
g-bdon.s. He said, "Refute, if you can, the
charge of cpseudosophistication' currently
being made against much of what's new in
the elementary school mathematics curric-
ulum."

I looked carefully, then, at units on ge-
ometry in some of the contemporary text-
books and could easily imagine many ele-
mentary school children who, anxious to
please their teachers, could and would
memorize all the new words, the collec-
tions of pictures that go with the words,
and the symbols and measurement for-
mulas that go with the pictures, just as
children before have memorized their way
through arithmetic without really under-
standing the ideas represented by the lan-
guage and the mathematical symbols.

While I deplore the charge of pseudo-
sophistication, I concede that it could be
true. It is possible to teach a mathemat-
ically sophisticated language and symbol-
ism without realizing the basic purpose of
all our efforts: that children come to
possess mathematically sound and mathe-
matically rich concepts. Before deciding
what geometric concepts to teach and
when to teach them, we need to consider
what research has to say about how chil-
dren learn geometric and topological con-
cepts.

The major contemporary contributor to
research in concept formation in the child

* Adapted from a epeeeli made at the Atlanta Area Meeting
of NCTM, November 20, 1964.

is Jean Piaget, the Swiss psychologist,
philosopher, and educator. Piaget has con-
ducted and published an amazing number
of studies of intellectual development and
has been largely responsible for many re-
lated studies by other psychologists and
learning theorists.

At the grave risk of oversimplifying
Piaget's many-faceted theory, I have
chosen to examine the implications of two
of his hypotheses for the teaching of geo-
metric concepts in the upper elementary
school.

Much of his theory is dominated by the
hypothesis that action-involvement is the
key to progress in concept development.
With . rgard to spatial relationships,
Piaget's hypothesis is even a bit startling.
He emphasizes that action on objects in
the child's world, rather than perception
of the objects, is of primary importance.
John H. Flavell, who is perhaps the most
important American interpreter of
Piaget's developmental theory, points out
that it just seems natural to us to assume
that we see space as it is and to assume
that we have always seen it that way. Not
so, says Piaget. This effortless seeing is
really the end product of long and
arduous developmental construction, and
the construction is more dependent on ac-
tions than perception per se. One key im-
plication, then, is this: action on objects
precedes perception and, of course, con-
ception.

Piaget's research led him to the conclu-
sion that concepts involving topological
relations precede those of projective and

100
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Euclidean relations. Moreover, topological
relations constitute the foundation on
which the others are constructed. The im-
plication here is one of order in the devel-
opment of geometric concepts.

Topological relations of an elementary
nature included in all contemporary curric-
ula are these: the distinction between
open and closed curves; the ideas of
boundary, of regions interior to a closed
figure and exterior to a closed figure; the
idea of betweenness on open figures.
Piaget found these relations to be under-
stood by the early school-age child. That
this is so seems reasonable when one con-
siders the following instances of action on
objects in the child's world.

Little boys scratch out rings in the sand
or clay in schoolyards for their games of
marbles (Fig. 1). Marbles lying wholly
within the ring represent points (A and B
in the figure) inside, or interior to, the
closed curve; marbles lying outside the
ring represent points (C and D in the
figure) in the exterior region; and marbles
lying on the ring represent points (E in the
illustration) on the curve, or boundary.

Do little girls still play hopscotch?
Children who sketch with sticks in the
sand or with crayons on the sidewalk the
union of rectangles, as shown in Figure 2,
are also action-involved with elementary
topological notions. According to the
rules of the game, one tries to toss a stone
or token of some sort so that it falls in a
region interior to one of the closed figures
(point A in Fig. 2). However, it some-
times falls on the boundary of a closed
figure (point B), sometimes on the com-
mon boundary of two closed figures
(point C), and sometimes in the exterior
region of the union of the rectangles (point
D).

The conceptualizations of simple closed
figures, regions interior to closed curves,
regions exterior to closed curves, and
boundaries of the regions are already
"working" concepts for the child who has
engaged in these or similar games. The
young child can also discriminate between

Figure 1

Figure 2

simple closed and open curves, for he
travels many paths or pushes things, such
as marbles, miniature cars, or doll car-
riages, along pathsactivities which pro-
vide the action-involvement from which
he conceptualizes the distinction between
open and closed curves, points between
other points, endpoints, etc.

Consider the example represented by
the open curves in Figure 3. Let's imagine
that Tom occupies a desk on the opposite
side of the classroom from the pencil
sharpener. Let point A represent Tom's
desk and point B represent the pencil
sharpener. Tom has several choices for
the path from his desk to the sharpener:
(1) He can travel the most direct path
from A to B (Fig. 3a); (2) he can go along
the aisle by his desk to the back of the
room, across the back of the room, and

444 The Arithmetic Teacher
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Figure 3a

A

Figure 3b

A. .8

down another aisle to B (Fig. 3b), or (3)
he can go to the front of the room and
across (Fig. 3c.). If Tom has complete
freedom of chase he may even travel a
path up one aisle and down the next (Fig.
3d). In fact, he may deliberately choose
this path so that (by chance, of course!) he
jostles his friend Jack's desk (at point C),
which lies between points A and B.

Through discussion and questioning,
children can be guided tc organize their
ideas about topological relations by re-
lating their experiences to imaginative
representations of them; it is after a child
acquires working concepts that it is mean-
ingful to provide him with the more
formal language and representations to
associate with the generalized concepts.

Another topological property included
in contemporary programs is that of a
continuous infinite set of points. Piaget's
experiments indicate that a child's con-
ceptualization of a continuous figure as a
connected series of points, infinitely small
and infinitely many in number, is again the
result of developmental change, and is not
usually available to the child before early
adolescence.

There is need for more definitive re-
search on this and other topological prop-
erties in.cluddd in elementary school pro-
grams. In the meantime, let us be careful
to avoid pseudosophisticated glibness
about "continuous lines" and "infinite
sets of points" without some assurance
that the concepts with which this Ian-

Figure 3c

Figure 3d

guage is associated are suitable ones for
the children in our classes. Our task is to
recognize patterns of developmental
change, a kind of rhythm in intellectual
growth, and to "fit" learning experiences
and instruction into this rhythm.

Piaget's experiments involving con-
cepts in projective geometry include
studies of those properties which remain
perceptually invariant under changes in
the point of view from which a figure is
looked at, i.e., spatial perspective. He de-
scribes a task in which children were asked
to arrange sticks in a straight line. The
youngest were unable to do so. The next
age group could do so, if the arrangement
followed a course parallel to the straight-
line edge of a table; otherwise, the ar-
rangement tended to drift toward some
nonlinear reference curve. However, the
seven-year-olds generally tested for
straightness by sighting along the array of
sticks from an end -on. position.

Of course, the arrangement of objects in
a straight line is not of particular rele-
vance for us, but Piaget interprets these re-
sults as the child's growing awareness of
the existence of points of view and the
choice of perspectives for assessing the
problem at hand. This interpretation is of
significance to us in the development of
perspective with regard to two-dimen-
sional and three-dimensional space.

Children in the upper grades need to
handle, or "act on," physical models of
simple open and closed curves and simple
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open and closed surfaces which can be
looked at from various points of view.
For example, let them view a large square
tile at some distance from them so that all
points on the boundary (the square) are
approximately the same distance from
their eyestheir "point of view." Let
them draw the boundary as it appears to
them. The drawing should be the same as
the one we usually see representing a
square (Fig. 4a). Now rotate the tile so
that it still lies in the same plane as be-
fore, but the vertices of the square do not
occupy the same points; have the children
draw the boundary as it now appears to
them (Fig. 4b). Now tilt the tile so that it
is no longer in the same plane as before, ex-
cept for one of the edges; agc,in ask the
children to draw the boundary as it ap-
pears to them (Fig. 4c). Perhaps they can
find pictures of a tiled floor in which the
"squareness" of the tiles is distorted be-
cause of the perspective from which the
picture is made (Fig. 4d). At this point I
can't resist a reference to the rich possibil-
ities of discussions on "Geometry in Art"
with special attention to perspective.

Provide worksheets with representa-
tions of plane figures as they might look
from many different points of view and
let children match the representations of
similar or congruent figures.

Figure 4a Figure 4b Figure 4c

Figure 4d
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Figure 5

Figure 6

In later experiences, display on a bul-
letin board drawings of three-dimensional
models as they might appear from several
different points of view, as illustrated for
a pyramid in Figure 5. Let children handle
three-dimensional models (they can easily
be made from construction paper) and try
to hold their models in the positions
corresponding to the points of view from
which each of the drawings was made.
Such an experience also provides an ex-
cellent time for using the language of
"vertex," "edge," "face," and for discuss-
ing the ideas of a closed surface, of a re-
gion interior to a closed surface, of a closed
surface as a boundary of the interior re-
gion, and of a region exterior to a closed
surfs -'e.

Still later, let the children draw a cube,
a pyramid, or another three-dimensional
model as it would look if it were "undone"
and opened out flat. Or let them match
the three-dimensional models with two-
dimensional paper patterns for making
models of their own. Let them match the
patterns for the models with correspond-
ing drawings of the completed models
(Fig. 6). Such experiences are also impor-
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tant for many later and more formal learn-
ing experiences in mathematics.

In Piaget's treatment of concepts of
Euclidean geometry, his studies are pri-
marily concerned with conservation and
measurement of length, area, and volume.
In these experiments he also finds a de-
velopmental trend zcording to age. Since
the idea of conserva... .a is central to much
of Piaget's theory of mathematical con-
cept development, let me recount one ex-
periment on conservation.

The experimenter and the child have
two balls of clay, both of the same shape
and size. The shape of one ball is then
changed by rolling it into a sausagelike
shape, or flattening it into a cake, or
breaking it into pieces, while the other ball
of clay retains its original shape for com-
parison. The experimenter tries to find out
whether the child thinks the amount, the
weight, and the volume of the clay have
been changed by the transformations, or
whether he thinks they remain unchanged,
i.e., whether the amount, the weight, and
the volume of the clay have been con-
aerved.

Piaget's subjects indicated working con-
cepts of conservation of matter regardless
of perceptual changes at ages 8 to 10, con-
servation of weight at ages 10 to 12, and
conservation of volume at 12 years or
later. The important implication here is
not that there is a "natural" maturation
process going on with increasing age and
that all we need to do is wait until the
child ages sufficientlywe know better
than that! Instead, the important implica-
tion is this: there is a pattern of sequential
stages which mark concept formation.
Learning experiences and teaching tech-
niques need to be devised to provide ac-
tive participation by the children, ex-
change of ideas with other people through
class discussions, and refinement of thc
child's own developing processes accord-
ing to a developmental sequence.

For instance, in working with the mea-
surement of area, before any formal gen-
eralizations or computational rules for

October 1985

finding area ere taught, we might provide
experiences such as the following, in which
children "act on" the plane regions to be
measured and discover for themselrin the
idea of conservation of area.

First, we will assume that the child al-
ready possesses the concept of a linear
unit for measuring line segments or the
union of line segments. Let me digress
still further and summarize the funda-
mental notions involved in the concept of
measurement :

1 The measurement process requires the
choice of a unit that is of the same na-
ture as the thing one wants to measure.

2 The unit needs to be such that it can be
moved around or copied for comparison
with the thing one wants to measure.

3 Measurement is a process of assigning a
number to a set or an entity of some
kind and yields an approximate number
of units.

4 In measurement, one chooses an ap-
propriate unit.
Now I shall use representations of rec-

tangular disks; however, in ole classroom
one should begin with actual models of
rectangular regions, such as table tops,
bulletin boards, or rectangular pieces of
cardboard which the child can "act on."
The figures in Figure 7 represent a rec-
tangular region. To measure the surface
one must choose (1) a unit of the same na-
ture as is the thing to be measured, i.e., a
unit possessing surface; (2) a unit that can
be moved around for comparison with thc
surface to be measured, and (3) an ap-
propriate unit. One possible unit is a
circular disk (Fig. 7a). It has surface, and

Figure 7a

1 Pi 9
447
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so is of the same nature as the thing to be
measured. It can be moved around or
copied for comparison, but it is not con-
venient or appropriatei.e., six circular
units of surface compared with the surface
of the rectangular region do not even
closely approximate the surface of the re-
gion. Another possible unit is a triangular
disk (Fig. 7b). It has the same nature as

Figure 7b

the thing to be measured, and it can be
copied and moved around. Although it is a
better choice than the circular disk, it is
not so convenient as a square disk (Fig.
7c). Measurement also involves the process

Figure 7c

I I
I I

L lirr -;
I I

of assigning a number to this plane rec-
tangular region. Thus, we count the num-
ber of square disks it takes to cover the re-
gion. We say the measure of the plane re-
gion is 6; there are 6 units of surface
measurement in the region.

Consider the rectangular region repre-
sented in Figure 8a. The rectangle en-
closing the region measures 3 linear units
by 4 linear units. What is the measure of
the interior region? In other words, what
is the area of the rectangular region?

Figure 8a

L71:
Figure 8b

There are 3 rows with 4 square units in
each row, or 12 square units. Notice that
the area of the rectangular region in
Figure 8b is also 12 square units, or 2 rows
with 6 square units in each row. The area
of the two rectangular regions is the same,
even though the rectangles are not con-
gruent; furthermore, the perimeters of the
two rectangles are not the same. The first
rectangle has a perimeter of 14 linear
units; the second rectangle has a peri-
meter of 16 linear units.

In these first experiences, let the chil-
dren handle the square disks; let them "act
on" the thing to be measured by placing
enough square disks on it to cover the re-
gion, and then let them count the number
of square unite of surface in the region.
Also$ let them count the number of linear
units along the boundary, or rectangle.
The words "area" and "perimeter" should
come after the children grasp the idea of
square units for measuring plane regions
and linear units for measuring line seg-
ments or the union of line segments (as in
rectangles and other simple closed linear
figures).

Consider the rectangular region repre-
sented by Figure 8c. Do you suppose the
area of this region is the same as that of
the other two? An attempt to use the same
unit of measurement poses a problem.
Shall we use a smaller unit? To compare
the areas, we need to use the same unit.

a
Figure 8c

448 The Arithmetic Teacher
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Give your children an opportunity to dis-
cover the solution to this problem. They
have few inhibitions about cutting some of
the square disks into halves and making a
"fit." And, again, although the perimeters
are not the same, the areas are.

The foregoing examples are all rather
elementary. The point I seek to make is
that experiences in which the child "acts
on" the objects in his world rather than
passively observing someone else, usually
the teacher, showing and telling him about
geometric relations and properties is a
first step in the developmental formation
of geometric concepts. The child who has
these experiences is less likely to confuse
the concepts of perimeter and area than
those who, without action involvement
and small group "discovery" experiences,
simply memorize computational rules for
determining perimeter and area.

Of course, in still later learning experi-
ences, children must learn that society has
adopted certain standard units of measure-
ment, both the English system and the
metric system. Conversion ratios from,
say, square inches to square feet, and vice
versa, will have real meaning for children
who have "acted on" the problem of how
many square inches are in a square foot by
placing 12 rows of 12 cardboard square

disks (each disk representing a square
inch) on a larger cardboard square disk
which measures one foot on each side, and
then counting the number needed to cover
the larger disk.

In closing, I encourage you to experi-
ment, to conduct your own action-re-
search in your classrooms to determine
what geometric concepts should be in-
cluded in the upper elementary school
mathematics program. Read the research
report in the October, 1964, issue of
THE ARITHMETIC TEACHER by Charles
D'Augustine. He reports a study on
teaching topics in geometry and topology
to an average sixth-grade class. In the
final paragraph he calls for more research
to determine what topics are teachable,
suitable, and efficiently learnable at the
various levels of the elementary school.
The criteria of teachability, suitability,
and learnability are worth remembering.
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The proper study of mankind is geome-
try. Tiny Timothy chose a nickel rather
than a dime, but it was worldly wisdom,
rather than geometric sense, that he
lacked. Timothy's grandfather, however,
who was shrewd in money matters, be-
lieved that three-foot cubes rather than
three-foot spheres should adorn the new
courthouse. He surmised that the cubes,
covered only on five faces, would require
less gold leaf to gild. His geometric guess
was almost as naive as Timothy's money
muddle.

Myra in Grade 5 wanted to grow
flowers. Her parents gave her fifty feet of
aluminum edging and told her that she
could have all the ground that the edging
would enclose. What shape of flower bed
would give her the most space?

At a sale Mr. Handyman bought a
piece of linoleum that was nine feet wide
and sixteen feet long. He knew that with
only one cut he could fit it on a floor
twelve feet by twelve feet. This, as well
as the other cases cited, requires geometry.

Or consider the circles in Figure 1. Obvi-
ously the black circle on the right is
larger than the black circle on the left. But
is it?

Similarly for Figure 2. Which has the
greater area, the outer black annulus (or
ring) or the inner black circle?

Another instance is the well-known
Figure 3. Which segment, the horizontal
or the vertical, is the longer?

Perhaps you think such examples are
trivial. At least they are homely, ordinary.
But there are more important applications
too; you see them daily. When mathe-
maticians use higher geometry to solve
complicated problems in the production
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Figure 1

Figure 2

Figure 3

and distribution of goods, no one con-
cerned thinks the matter trifling. Con-
sider, for example, the problem of selecting
the most economical combinations of some
twenty ingredients that fluctuate in price
daily. This problem arises in sausage-
making. Which quantities of which meats
will satisfy fixed standards of high quality

11
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and at the same time cost the least accord-
ing to today's prices? Here the mathema-
tician employs geometry in an untrivial
way.

Ageless geometry

To enumerate and to describe man's
uses of geometry would take a trip in time
from prehistory to the present moment.
The subject began in earth-measuring, it
grew in planet-observing, it led the way in
pure mathematics, and it pioneered in
modern mathematics.

Man has always needed geometric prin-
ciples, however dimly he may atfirst have
perceived them. Similarly, children's lives
cannot be devoid of geometry, however
unaware they may be of its formal aspects.
For, irrespective of its many applications
and regardless of its value as a system of
reasoning (and both of these phases merit
attention), geometry embodies numerous
ideas interesting, in themselves.

Geometry for all

We suggest, therefore, that geometry
deserves a lifetime of interest. To study ft
in only the tenth grade hardly suffices. At
that level pupils pretiumably study one or
more kinds of geometry as deduction.
There and in subsequent courses they also
learn about applications. But the com-
puting with geometric formulas that fre-
quently represents the only planned ex-
perience that pupils have in geometry
prior to Grade 10 seldom prepares them
for Grade 10.

Grade-school geometry

Informal geometry in the elementary
grades can, therefore, counteract a serious
deficiency. In these grades geometry is the
study of form. Shapes, sizes, patterns, de-
signsthese are the stuff from which
children form concepts. From studying
forms children discover numerous geo-
metric relations; from making construc-
tions pupils Iearn about geometric facts;
from measuring figures learners acquire a
background of geometric information. The
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Figure 4

work teems with both classical concepts
and contemporary concepts.

Fun and future

We believe, therefore, that children of
all ages should get wimple opportunities to
find out things about geometry. The goal
is satisfaction, here and now, with things
mathematical, and geometry abounds in
such ideas. An accompanying benefit will
doubtless be a preparation for a more for-
malized geometry of proofs. Just as the
ancient Egyptians' surveying and the
early Chaldeans' star-studying opened a
path for the deductions of the Greeks, so
the block-arranging of the curious kinder-
gartners and the design-drawing of the en-
thusiastic upper graders provide under-
standings for the problems of the older
pupils. The pleasures of the moment
outweigh the preparations for the future.

Therein lies the heart of the matter.
Teachers cherish in their pupils such
traits as alertness, preparedness, and
willingness. And possibly the greatest of
these is willingness. Seldom, though, do
these traits develop overnight; rather,
they seem to stem from many things that
pupils do. Through the situations that
teachers encourage them to explore, pupils
discover relations, achieve insight, and
gain satisfactions for the moment as well
as for later studies. Mathematics, you
know, is a cumulative subject. For exam-
ple, clusters of dots, such as those in
Figure 4, provide numerous helpful experi-
ences. For infants the dots in Figure 4 are
many, whereas those in Figure 5 are few.

Figure 5
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Figure 6c Figure 6d

Later the dots represent nine. Then they
help with the ancient idea that some
numbers are squares: that nine corre-
sponds to three threes. Furthermore, in

Figure 7

Figure 8c

*
*

0
Figure 8e

Figure 10

Figures 6ae, the square arrays, one, four,
nine, sixteen, twenty-five, etc., when or-
dered and compared via differences, encour-
age pupils to think about the odd numbers.
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Square numbers:

-- 1 4 9 16 25 36 49 .. .

DIfferences between successive square num-
bers:

3 5 7 9 11 13 ...
Does zero belong in the blank before 1

in the top row?
For upper graders, finding a continuous

path containing four line segments and
connecting all the nine points will prob-
ably be a fascinating challenge. It might
also be preparation for later work in sim-
ple topology, where, among other things,
the study of pathsclosed paths and not-
closed pathsreceives attention.

Geometric readiness

Examples such as the foregoing abound.
Suppose that we look briefly at the pupils'
readiness before we consider further in-
stances.

We have hinted that readiness in ge-
ometry implies at least two other "nesses":
1. Preparedness, or adequate mathemati-

cal maturity to go on.
2. Willingness, or enough emotional se-

curity to go on.
Geometric preparedness begins at an

early age. Tots in kindergarten enjoy
plopping the cutout figures into their
proper places (Fig. 7). Children quickly
discriminate between right triangles and
equilateral triangles, between squares and
oblongs, and between trapezoids and par-
allelograms. Already these youngsters are
shape conscious.

Success in this sort of activity leads
young children on. Their handling of
squares, cubes, disks, triangles, spheres,
and so on, prepares them for further work
with forms.

All too frequently, however, such activi-
ties terminate abruptly. This occurs be-
cause courses of study encourage the
pupils to put away "childish things" and
settle down to the stern business of memo-
rizing facts and practicing operations with
numbers. Since perfection in these worthy

matters eludes most learners, the study of
facts and operations flourishes while the
study of forms !anguishes. Of course, les-
sons in the upper grades deal with areas
and volumes, but computing with num-
bers and distinguishing between area and
perimeter and between volume and sur-
face have been known to monopolize the
act.

Fortunately, the trend today points to
geometry for the sake of geometry, rather
than to geometry as further practice in
calculating. In the elementary grades in-
formal, or intuitive, studies get the empha-
sis. Drawing, counting, and measuring
lead pupils to observing, inferring, and
generalizing. Consciousness of forms con-
tinues to grow, and readiness for proofs
in geometry also continues to grow.

Let us return momentarily to the tots.
By handling wooden, paper, or plastic
representations of geometric figures, chil-
Ctren appreciate numerous ideas; among
these are notions of square corners,
straight edges, round edges like faces,
roundness of disks, and roundness of balls.
These children gain a degree of under-
standing to go on; they grow in geometric

adiness.
But children gain in willingness too.

The shapes, the fitting of objects into pat-
terns, the matching, the comparing, and
the counting all make children receptive
to further activities. One quite ordinary
first grader happened onto triangular-
number arrangements, as in Figures 8a-e.
Pupils do things, learn, and crave to learn
some more.

So, as they progress in mathematical
maturity (preparedness), pupils tend to
seek new mathematical worlds to P...snquer
(willingness). Thus, willingness and also
preparedness stem from activitiesthings
done successfully. Junior is likely to won-
der what the next step will lead to. If, for
example, thirty-six lines can be drawn
through nine points such that no three
points lie on aline (Fig. 9), then how many
lines can be drawn if exactly three of the
nine are on one line? (Fig. 10.) In the

11^._7
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figures the joins of one point with each of
the others constitute a hint; this is one way
to begin the problems.

In sum, teachers seek to challenge pu-
pils, not to frustrate. Sometimes a team
approach (or working as a class on a per-
plexing problem) will prevent defeat.
Whether pupils suffer more from frustra-
tion than from boredom, however, is moot.

Some s;mple arrangements

Besides patterns of points previously
mentioned, we might look at a few other
configurations. In Figure 11 a side of the
square ABCD measures 3, AE measures 2,
and angle DEF measures 90°. In square
KLMN, a side measures 2, and angle
LKP has the same measure as angle BEF.
The sections thus cut form two separate
squares or one combined squarea kind
of readiness for the Theorem of Pythag-
oras.

In Figure 12 ABCD is a square with a
side that measures 6, and BEFG is a
square with side 3. AL= BH =CJ =DK
=11, and BN measures 3. M is the inter-
section of HK and JL. Square MNOP has
the same measure in square units as
squares ABCD and BEM combined.

Now suppose that we begin with other
segments, half-squares and half-oblongs,
for example. These, plus a few rectangles,
semicircles, and quAdr.ants, form a variety
of designs. Figur( 4 13-17 ;llustrate some
of them.

Abundant triangles

If the pupils start with three equal seg-
ments and the question, "What can we do
with the segments?", they can soon come
vp with an equilateral triangle (Fig. 18).
By joining the mid-points of the sides of
the triangle, they can produce four equi-
lateral triangles (Fig. 19). By repeating
the process successively for unshaded tri-
angles, the pupils obtain Figures 20
and 21.

Or, the pupils may choose not to shade
any of the component triangles and pro-
ceed to successive quartering of all the

new triangles. One triangle yields four tri-
angles, four yield sixteen, and sixteen
yield sixty-four. Some pupils will move
ahead and forge a fifth stage or even fur-
ther proliferations of triangles. Theoret-
ically, the fast workers need not grow
weary of waiting for their slower class-
mates to finish a step. Endless steps await
those who wish them, and the steps get
harder.

Some pathological curves

If the pupils begin again with three
equal segments, they can form another
equilateral triangle (Fig. 22). By trisect-
ing the sides, erecting equilateral triangles
on the middle sections, and erasing the in-
tersections of these four triangles, the
pupils get Figure 23. Then in Figure 24
further trisections and outward points ap-
pear. Some pupils may wish to carry this
procedure still further. Although the area
of this snowflake-like curve clearly cannot
exceed the surface of the page, its perim-
eter becomes infinitely large.

Similarly for other pathologic curves
(Figs. 25-27), the pupils proceed from an
equilateral triangle again. Here, 'owever,
the open mid-sections are spanned by
equal segments that intersect inside in-
stead of outside the original triangle. This
gives an inverted snowflake pattern. Here
too, the perimeter can be made infinitely
large, even though the area will not exceed
that of the drawing paper.

Figures 28,29, and 30 show what results
when pupils begin with a circle, divide it
into six equal parts, and invert alternate
arcs. This procedure, repeated, leads to
another figure, the aesthetics of which may
be doubtful. It is known as an inside-out-
side curve. It troubles almost everyone
who seeks to determine its curvature.

Tiling patterns

Ali pupils soon learn'wlien they begin to
work with measures of angles, one full
turn 360°. A further interesting
investigation results when pupils face the
question, "What flat figures will fit around
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Figure 32

Figure 34

a point and fill in the flat surface?" Regu-
lar polygons seem to be needed, although
all rectangles will suffice, but not all reg-
ular polygons will meet the requirement.

Considerable acquaintance with these
polygons can result from such experiment-
ing. How can we draw them? Later the
pupils will study the straightedge-com-
pass constructions for regular polygons,
and still later they will study criteria of
constructibility.

But strictly informal experimenting will
reveal some combinations of polygons
that, so to speak, cover the floor. Indeed,
among sophisticates the whole subject of
floor coverings; filings, and mosaics bears
the impressive name of "tessellation."

Six equilateral triangles (Fig. 31), four
rectangles (Fig. 32), and three hexagons
(Fig. 33) exhaust the possibilities of how
many flat figures will fit around a point
and fill in a flat surface. If, however, the

Figure 33

Figure 35
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pupils do not limit the problem to poly-
gons of one single sort, then the following
serve: two hexagons and two triangles
(Fig. 34); two octagons and one square
(Fig. 35); three triangles and two squares
(Fig. 36); one hexagon, two squares, and
one triangle (Fig. 37). Still other possi-
bilities, not illustrated here, exist: one
hexagon and four triangles; one dodeca-
gon, one hexagon, and one square; two
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dodecagons and one triangle. Your pupils
may want to try them.

It will occur to the pupils that these are
possibilities when they experiment and
construct the following table, referring to
regular polygons:

Number of sides:

3 4 5 6 7 8 9 10 11 12

Measure of angles:

60 90 108 120 128+
135 140 144 147- 150

From the increasing sizes of the angles, it
appears that regular polygons having a

Figure 37

Figure 39

t. 12 1-11

still greater number of sides are not likely
candidates,

Centroids

Locating a centroid, or a center of mass
of a body, can become a thorny problem.
Quite young children, on the other hand,
can cut geometric forms from cardboard
and readily locate lines and points of bal-
ance.

Regular figures balance rather easily on
a knife-edge. The intersection of two such
lines of balance determines a center of
balance, or a center of mass. Equilateral
triangles, squares, regular hexagons, reg-

Figure 38

Figure 41
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ular octagons, and circles illustrate these
ideas.

When the figures depart from regular-
ity, the knife-edge procedure may become
more difficult, as in the case of a convex
polygon. There the centroid lies outside
the figure (Fig. 38). This might become
the germ of the idea of a centroid for a
system of bodies, wIlich may interest the
future physicists and astronomers in your
classes.

Simple and nonsimple

Finding the centroid of an involved, yet
technically simple, curve could provide a
difficult problem. A cutout again provides
an intuitive approach (Fig. 39). Inci-
dentally, when is a curve simple? If the
left circle were removed from Figure 39,
the curve would remain simple. But if the
right circle were removed, the figure would
become nonsimple.

Figure 40 is another puzzler. It has two
outsides, one of which might seem at first
to be inside. When is an outside inside?

In case you wondered, here is one solu-
tion to the path problem, referred to ear-
lier, for nine points arranged as three
threes (Fig. 41).

Yin-yang

Rooted in antiquity, especially in ven-
erable Chinese philosophy, is the symbol
represented in Figure 42. From yang, lit-
erally the south o: sunny side of a hill, the
unshaded portion of the design represents
the bright, good, positive, male principle
in Chinese dualism. Yin, on the contrary,

Figure 42

symbolizes the dark, evil, negative, and fe-
male. The shaded part stands for yin.

Regardless of how pupils and their
teachers look on such mystical matters,
the emblem appears to be easy to con-
struct and to describe geometrically.

Summary

Suppose, now, that we summarize.
From the kindergarten on the concepts,
rules, and operations of arithmetic and al-
gebra dominate pupils' experiences in
mathematics. Few deny it, and if the teach-
ing has been good, still fewer bemoan it.

New occasions, however, teach new
duties. Mathematics grows apace; mathe-
matics education accelerates its search.
With reason we urge teachers to learn new
mathematics and teach new courses. We
see merit in helping young children to
gain acquaintance with good mathematics
early. We note with pleasure the improve-
ments in textbooks of elementary-school
mathematics.

In our zeal, however, we run the risk of
letting abstractions get out of hand. This
we disapprove. The motto "be abstract"
should be left to the habitants of Green-
wich Village. The race, including those of
us who urge mathematics reforms, learned
mathematics through practical needs and
real problems. The abstractions, the gen-
eralizations, and the deductions followed
the investigations, the approximations,
and the corrections.

Surely, therefore, we should not deny
young children the opportunity to explore
and learn.

A proper study for all children is geom-
etrythe geometry of form. Here pupils
perceive, compare, measure, and general-
ize. Here they sharpen intuition without
plunging too far into abstractions. Above
all, children see values in what they do. If
we can encourage pupils to discover for
themselves some principles in the science
of space, then they will bring into their
geometry classes a usable store of informa-
tion about the Euclidean plane. They ),
might also have a good start on three-space.
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